Metamath Proof Explorer


Theorem rollelem

Description: Lemma for rolle . (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses rolle.a φ A
rolle.b φ B
rolle.lt φ A < B
rolle.f φ F : A B cn
rolle.d φ dom F = A B
rolle.r φ y A B F y F U
rolle.u φ U A B
rolle.n φ ¬ U A B
Assertion rollelem φ x A B F x = 0

Proof

Step Hyp Ref Expression
1 rolle.a φ A
2 rolle.b φ B
3 rolle.lt φ A < B
4 rolle.f φ F : A B cn
5 rolle.d φ dom F = A B
6 rolle.r φ y A B F y F U
7 rolle.u φ U A B
8 rolle.n φ ¬ U A B
9 1 rexrd φ A *
10 2 rexrd φ B *
11 1 2 3 ltled φ A B
12 prunioo A * B * A B A B A B = A B
13 9 10 11 12 syl3anc φ A B A B = A B
14 7 13 eleqtrrd φ U A B A B
15 elun U A B A B U A B U A B
16 14 15 sylib φ U A B U A B
17 16 ord φ ¬ U A B U A B
18 8 17 mt3d φ U A B
19 cncff F : A B cn F : A B
20 4 19 syl φ F : A B
21 iccssre A B A B
22 1 2 21 syl2anc φ A B
23 ioossicc A B A B
24 23 a1i φ A B A B
25 18 5 eleqtrrd φ U dom F
26 ssralv A B A B y A B F y F U y A B F y F U
27 24 6 26 sylc φ y A B F y F U
28 20 22 18 24 25 27 dvferm φ F U = 0
29 fveqeq2 x = U F x = 0 F U = 0
30 29 rspcev U A B F U = 0 x A B F x = 0
31 18 28 30 syl2anc φ x A B F x = 0