| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1cn |  | 
						
							| 2 |  | 2re |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 |  | nndivre |  | 
						
							| 5 | 2 3 4 | sylancr |  | 
						
							| 6 | 5 | recnd |  | 
						
							| 7 |  | cxpcl |  | 
						
							| 8 | 1 6 7 | sylancr |  | 
						
							| 9 | 1 | a1i |  | 
						
							| 10 |  | neg1ne0 |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 9 11 6 | cxpne0d |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | nnz |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 8 12 13 15 | expsubd |  | 
						
							| 17 |  | root1id |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 8 12 13 | expclzd |  | 
						
							| 21 | 8 12 13 | expne0d |  | 
						
							| 22 |  | recval |  | 
						
							| 23 | 20 21 22 | syl2anc |  | 
						
							| 24 |  | absexpz |  | 
						
							| 25 | 8 12 13 24 | syl3anc |  | 
						
							| 26 |  | abscxp2 |  | 
						
							| 27 | 1 5 26 | sylancr |  | 
						
							| 28 |  | ax-1cn |  | 
						
							| 29 | 28 | absnegi |  | 
						
							| 30 |  | abs1 |  | 
						
							| 31 | 29 30 | eqtri |  | 
						
							| 32 | 31 | oveq1i |  | 
						
							| 33 | 27 32 | eqtrdi |  | 
						
							| 34 | 6 | 1cxpd |  | 
						
							| 35 | 33 34 | eqtrd |  | 
						
							| 36 | 35 | oveq1d |  | 
						
							| 37 |  | 1exp |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 25 36 38 | 3eqtrd |  | 
						
							| 40 | 39 | oveq1d |  | 
						
							| 41 |  | sq1 |  | 
						
							| 42 | 40 41 | eqtrdi |  | 
						
							| 43 | 42 | oveq2d |  | 
						
							| 44 | 20 | cjcld |  | 
						
							| 45 | 44 | div1d |  | 
						
							| 46 | 23 43 45 | 3eqtrd |  | 
						
							| 47 | 16 19 46 | 3eqtrrd |  |