Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
|
2 |
|
2re |
|
3 |
|
simpl |
|
4 |
|
nndivre |
|
5 |
2 3 4
|
sylancr |
|
6 |
5
|
recnd |
|
7 |
|
cxpcl |
|
8 |
1 6 7
|
sylancr |
|
9 |
1
|
a1i |
|
10 |
|
neg1ne0 |
|
11 |
10
|
a1i |
|
12 |
9 11 6
|
cxpne0d |
|
13 |
|
simpr |
|
14 |
|
nnz |
|
15 |
14
|
adantr |
|
16 |
8 12 13 15
|
expsubd |
|
17 |
|
root1id |
|
18 |
17
|
adantr |
|
19 |
18
|
oveq1d |
|
20 |
8 12 13
|
expclzd |
|
21 |
8 12 13
|
expne0d |
|
22 |
|
recval |
|
23 |
20 21 22
|
syl2anc |
|
24 |
|
absexpz |
|
25 |
8 12 13 24
|
syl3anc |
|
26 |
|
abscxp2 |
|
27 |
1 5 26
|
sylancr |
|
28 |
|
ax-1cn |
|
29 |
28
|
absnegi |
|
30 |
|
abs1 |
|
31 |
29 30
|
eqtri |
|
32 |
31
|
oveq1i |
|
33 |
27 32
|
eqtrdi |
|
34 |
6
|
1cxpd |
|
35 |
33 34
|
eqtrd |
|
36 |
35
|
oveq1d |
|
37 |
|
1exp |
|
38 |
37
|
adantl |
|
39 |
25 36 38
|
3eqtrd |
|
40 |
39
|
oveq1d |
|
41 |
|
sq1 |
|
42 |
40 41
|
eqtrdi |
|
43 |
42
|
oveq2d |
|
44 |
20
|
cjcld |
|
45 |
44
|
div1d |
|
46 |
23 43 45
|
3eqtrd |
|
47 |
16 19 46
|
3eqtrrd |
|