Metamath Proof Explorer


Theorem root1cj

Description: Within the N -th roots of unity, the conjugate of the K -th root is the N - K -th root. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion root1cj N K -1 2 N K = -1 2 N N K

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 2re 2
3 simpl N K N
4 nndivre 2 N 2 N
5 2 3 4 sylancr N K 2 N
6 5 recnd N K 2 N
7 cxpcl 1 2 N 1 2 N
8 1 6 7 sylancr N K 1 2 N
9 1 a1i N K 1
10 neg1ne0 1 0
11 10 a1i N K 1 0
12 9 11 6 cxpne0d N K 1 2 N 0
13 simpr N K K
14 nnz N N
15 14 adantr N K N
16 8 12 13 15 expsubd N K -1 2 N N K = -1 2 N N -1 2 N K
17 root1id N -1 2 N N = 1
18 17 adantr N K -1 2 N N = 1
19 18 oveq1d N K -1 2 N N -1 2 N K = 1 -1 2 N K
20 8 12 13 expclzd N K -1 2 N K
21 8 12 13 expne0d N K -1 2 N K 0
22 recval -1 2 N K -1 2 N K 0 1 -1 2 N K = -1 2 N K -1 2 N K 2
23 20 21 22 syl2anc N K 1 -1 2 N K = -1 2 N K -1 2 N K 2
24 absexpz 1 2 N 1 2 N 0 K -1 2 N K = 1 2 N K
25 8 12 13 24 syl3anc N K -1 2 N K = 1 2 N K
26 abscxp2 1 2 N 1 2 N = 1 2 N
27 1 5 26 sylancr N K 1 2 N = 1 2 N
28 ax-1cn 1
29 28 absnegi 1 = 1
30 abs1 1 = 1
31 29 30 eqtri 1 = 1
32 31 oveq1i 1 2 N = 1 2 N
33 27 32 eqtrdi N K 1 2 N = 1 2 N
34 6 1cxpd N K 1 2 N = 1
35 33 34 eqtrd N K 1 2 N = 1
36 35 oveq1d N K 1 2 N K = 1 K
37 1exp K 1 K = 1
38 37 adantl N K 1 K = 1
39 25 36 38 3eqtrd N K -1 2 N K = 1
40 39 oveq1d N K -1 2 N K 2 = 1 2
41 sq1 1 2 = 1
42 40 41 eqtrdi N K -1 2 N K 2 = 1
43 42 oveq2d N K -1 2 N K -1 2 N K 2 = -1 2 N K 1
44 20 cjcld N K -1 2 N K
45 44 div1d N K -1 2 N K 1 = -1 2 N K
46 23 43 45 3eqtrd N K 1 -1 2 N K = -1 2 N K
47 16 19 46 3eqtrrd N K -1 2 N K = -1 2 N N K