Metamath Proof Explorer


Theorem root1id

Description: Property of an N -th root of unity. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion root1id N -1 2 N N = 1

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 1 a1i N 1
3 2re 2
4 nndivre 2 N 2 N
5 3 4 mpan N 2 N
6 5 recnd N 2 N
7 nnnn0 N N 0
8 2 6 7 cxpmul2d N 1 2 N N = -1 2 N N
9 2cnd N 2
10 nncn N N
11 nnne0 N N 0
12 9 10 11 divcan1d N 2 N N = 2
13 12 oveq2d N 1 2 N N = 1 2
14 2nn0 2 0
15 cxpexp 1 2 0 1 2 = 1 2
16 1 14 15 mp2an 1 2 = 1 2
17 ax-1cn 1
18 sqneg 1 1 2 = 1 2
19 17 18 ax-mp 1 2 = 1 2
20 sq1 1 2 = 1
21 16 19 20 3eqtri 1 2 = 1
22 13 21 eqtrdi N 1 2 N N = 1
23 8 22 eqtr3d N -1 2 N N = 1