Metamath Proof Explorer


Theorem rpaddcl

Description: Closure law for addition of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by NM, 27-Oct-2007)

Ref Expression
Assertion rpaddcl A + B + A + B +

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rpre B + B
3 readdcl A B A + B
4 1 2 3 syl2an A + B + A + B
5 elrp A + A 0 < A
6 elrp B + B 0 < B
7 addgt0 A B 0 < A 0 < B 0 < A + B
8 7 an4s A 0 < A B 0 < B 0 < A + B
9 5 6 8 syl2anb A + B + 0 < A + B
10 elrp A + B + A + B 0 < A + B
11 4 9 10 sylanbrc A + B + A + B +