Metamath Proof Explorer


Theorem rpaddcld

Description: Closure law for addition of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
Assertion rpaddcld φ A + B +

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 rpaddcl A + B + A + B +
4 1 2 3 syl2anc φ A + B +