Metamath Proof Explorer


Theorem rpcndif0

Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion rpcndif0 A + A 0

Proof

Step Hyp Ref Expression
1 rpcnne0 A + A A 0
2 eldifsn A 0 A A 0
3 1 2 sylibr A + A 0