Metamath Proof Explorer


Theorem rpcoshcl

Description: The hyperbolic cosine of a real number is a positive real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion rpcoshcl A cos i A +

Proof

Step Hyp Ref Expression
1 recn A A
2 coshval A cos i A = e A + e A 2
3 1 2 syl A cos i A = e A + e A 2
4 rpefcl A e A +
5 renegcl A A
6 5 rpefcld A e A +
7 4 6 rpaddcld A e A + e A +
8 7 rphalfcld A e A + e A 2 +
9 3 8 eqeltrd A cos i A +