Metamath Proof Explorer


Theorem rpcxpcl

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion rpcxpcl A + B A B +

Proof

Step Hyp Ref Expression
1 rprege0 A + A 0 A
2 recxpcl A 0 A B A B
3 2 3expa A 0 A B A B
4 1 3 sylan A + B A B
5 id B B
6 relogcl A + log A
7 remulcl B log A B log A
8 5 6 7 syl2anr A + B B log A
9 efgt0 B log A 0 < e B log A
10 8 9 syl A + B 0 < e B log A
11 rpcnne0 A + A A 0
12 recn B B
13 cxpef A A 0 B A B = e B log A
14 13 3expa A A 0 B A B = e B log A
15 11 12 14 syl2an A + B A B = e B log A
16 10 15 breqtrrd A + B 0 < A B
17 4 16 elrpd A + B A B +