Metamath Proof Explorer


Theorem rpcxpcld

Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1 φ A +
rpcxpcld.2 φ B
Assertion rpcxpcld φ A B +

Proof

Step Hyp Ref Expression
1 rpcxpcld.1 φ A +
2 rpcxpcld.2 φ B
3 rpcxpcl A + B A B +
4 1 2 3 syl2anc φ A B +