Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
rpdivcl
Next ⟩
rpreccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
rpdivcl
Description:
Closure law for division of positive reals.
(Contributed by
FL
, 27-Dec-2007)
Ref
Expression
Assertion
rpdivcl
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
2
rprene0
⊢
B
∈
ℝ
+
→
B
∈
ℝ
∧
B
≠
0
3
redivcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
≠
0
→
A
B
∈
ℝ
4
3
3expb
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
B
≠
0
→
A
B
∈
ℝ
5
1
2
4
syl2an
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
6
elrp
⊢
A
∈
ℝ
+
↔
A
∈
ℝ
∧
0
<
A
7
elrp
⊢
B
∈
ℝ
+
↔
B
∈
ℝ
∧
0
<
B
8
divgt0
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
0
<
A
B
9
6
7
8
syl2anb
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
0
<
A
B
10
elrp
⊢
A
B
∈
ℝ
+
↔
A
B
∈
ℝ
∧
0
<
A
B
11
5
9
10
sylanbrc
⊢
A
∈
ℝ
+
∧
B
∈
ℝ
+
→
A
B
∈
ℝ
+