Metamath Proof Explorer


Theorem rpdivcl

Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion rpdivcl A + B + A B +

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rprene0 B + B B 0
3 redivcl A B B 0 A B
4 3 3expb A B B 0 A B
5 1 2 4 syl2an A + B + A B
6 elrp A + A 0 < A
7 elrp B + B 0 < B
8 divgt0 A 0 < A B 0 < B 0 < A B
9 6 7 8 syl2anb A + B + 0 < A B
10 elrp A B + A B 0 < A B
11 5 9 10 sylanbrc A + B + A B +