Metamath Proof Explorer


Theorem rpdivcld

Description: Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
Assertion rpdivcld φ A B +

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 rpdivcl A + B + A B +
4 1 2 3 syl2anc φ A B +