Metamath Proof Explorer


Theorem rpdp2cl

Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses rpdp2cl.a A 0
rpdp2cl.b B +
Assertion rpdp2cl Could not format assertion : No typesetting found for |- _ A B e. RR+ with typecode |-

Proof

Step Hyp Ref Expression
1 rpdp2cl.a A 0
2 rpdp2cl.b B +
3 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
4 1 nn0rei A
5 rpssre +
6 10nn 10
7 nnrp 10 10 +
8 6 7 ax-mp 10 +
9 rpdivcl B + 10 + B 10 +
10 2 8 9 mp2an B 10 +
11 5 10 sselii B 10
12 readdcl A B 10 A + B 10
13 4 11 12 mp2an A + B 10
14 4 11 pm3.2i A B 10
15 1 nn0ge0i 0 A
16 rpgt0 B 10 + 0 < B 10
17 10 16 ax-mp 0 < B 10
18 15 17 pm3.2i 0 A 0 < B 10
19 addgegt0 A B 10 0 A 0 < B 10 0 < A + B 10
20 14 18 19 mp2an 0 < A + B 10
21 elrp A + B 10 + A + B 10 0 < A + B 10
22 13 20 21 mpbir2an A + B 10 +
23 3 22 eqeltri Could not format _ A B e. RR+ : No typesetting found for |- _ A B e. RR+ with typecode |-