Metamath Proof Explorer


Theorem rpex

Description: The positive reals form a set. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion rpex + V

Proof

Step Hyp Ref Expression
1 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
2 1 rpmsubg + SubGrp mulGrp fld 𝑠 0
3 2 elexi + V