Metamath Proof Explorer


Theorem rpexpcl

Description: Closure law for exponentiation of positive reals. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion rpexpcl A + N A N +

Proof

Step Hyp Ref Expression
1 simpl A + N A +
2 rpne0 A + A 0
3 2 adantr A + N A 0
4 simpr A + N N
5 rpssre +
6 ax-resscn
7 5 6 sstri +
8 rpmulcl x + y + x y +
9 1rp 1 +
10 rpreccl x + 1 x +
11 10 adantr x + x 0 1 x +
12 7 8 9 11 expcl2lem A + A 0 N A N +
13 1 3 4 12 syl3anc A + N A N +