Metamath Proof Explorer


Theorem rpexpcld

Description: Closure law for exponentiation of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpcld.1 φ A +
rpexpcld.2 φ N
Assertion rpexpcld φ A N +

Proof

Step Hyp Ref Expression
1 rpexpcld.1 φ A +
2 rpexpcld.2 φ N
3 rpexpcl A + N A N +
4 1 2 3 syl2anc φ A N +