Metamath Proof Explorer


Theorem rpgecl

Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion rpgecl A + B A B B +

Proof

Step Hyp Ref Expression
1 simp2 A + B A B B
2 0red A + B A B 0
3 rpre A + A
4 3 3ad2ant1 A + B A B A
5 rpgt0 A + 0 < A
6 5 3ad2ant1 A + B A B 0 < A
7 simp3 A + B A B A B
8 2 4 1 6 7 ltletrd A + B A B 0 < B
9 elrp B + B 0 < B
10 1 8 9 sylanbrc A + B A B B +