Metamath Proof Explorer


Theorem rpgecld

Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
rpgecld.3 φ B A
Assertion rpgecld φ A +

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 rpgecld.3 φ B A
4 rpgecl B + A B A A +
5 2 1 3 4 syl3anc φ A +