Metamath Proof Explorer


Theorem rpgt0d

Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φ A +
Assertion rpgt0d φ 0 < A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpgt0 A + 0 < A
3 1 2 syl φ 0 < A