Metamath Proof Explorer


Theorem rpgtrecnn

Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion rpgtrecnn A + n 1 n < A

Proof

Step Hyp Ref Expression
1 rpreccl A + 1 A +
2 1 rpred A + 1 A
3 1 rpge0d A + 0 1 A
4 flge0nn0 1 A 0 1 A 1 A 0
5 2 3 4 syl2anc A + 1 A 0
6 nn0p1nn 1 A 0 1 A + 1
7 5 6 syl A + 1 A + 1
8 flltp1 1 A 1 A < 1 A + 1
9 2 8 syl A + 1 A < 1 A + 1
10 7 nnrpd A + 1 A + 1 +
11 1 10 ltrecd A + 1 A < 1 A + 1 1 1 A + 1 < 1 1 A
12 9 11 mpbid A + 1 1 A + 1 < 1 1 A
13 rpcn A + A
14 rpne0 A + A 0
15 13 14 recrecd A + 1 1 A = A
16 12 15 breqtrd A + 1 1 A + 1 < A
17 oveq2 n = 1 A + 1 1 n = 1 1 A + 1
18 17 breq1d n = 1 A + 1 1 n < A 1 1 A + 1 < A
19 18 rspcev 1 A + 1 1 1 A + 1 < A n 1 n < A
20 7 16 19 syl2anc A + n 1 n < A