Metamath Proof Explorer


Theorem rplogcl

Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion rplogcl A 1 < A log A +

Proof

Step Hyp Ref Expression
1 simpl A 1 < A A
2 0red A 1 < A 0
3 1red A 1 < A 1
4 0lt1 0 < 1
5 4 a1i A 1 < A 0 < 1
6 simpr A 1 < A 1 < A
7 2 3 1 5 6 lttrd A 1 < A 0 < A
8 1 7 elrpd A 1 < A A +
9 relogcl A + log A
10 8 9 syl A 1 < A log A
11 log1 log 1 = 0
12 1rp 1 +
13 logltb 1 + A + 1 < A log 1 < log A
14 12 8 13 sylancr A 1 < A 1 < A log 1 < log A
15 6 14 mpbid A 1 < A log 1 < log A
16 11 15 eqbrtrrid A 1 < A 0 < log A
17 10 16 elrpd A 1 < A log A +