Metamath Proof Explorer


Theorem rplogcld

Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogefd.1 φ A
rplogcld.2 φ 1 < A
Assertion rplogcld φ log A +

Proof

Step Hyp Ref Expression
1 relogefd.1 φ A
2 rplogcld.2 φ 1 < A
3 rplogcl A 1 < A log A +
4 1 2 3 syl2anc φ log A +