Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.u |
|
5 |
|
rpvmasum.b |
|
6 |
|
rpvmasum.t |
|
7 |
1 2 3 4 5 6
|
rpvmasum |
|
8 |
3
|
phicld |
|
9 |
8
|
adantr |
|
10 |
9
|
nncnd |
|
11 |
|
fzfid |
|
12 |
|
inss1 |
|
13 |
|
ssfi |
|
14 |
11 12 13
|
sylancl |
|
15 |
|
simpr |
|
16 |
15
|
elin1d |
|
17 |
|
elfznn |
|
18 |
16 17
|
syl |
|
19 |
|
vmacl |
|
20 |
|
nndivre |
|
21 |
19 20
|
mpancom |
|
22 |
18 21
|
syl |
|
23 |
14 22
|
fsumrecl |
|
24 |
23
|
recnd |
|
25 |
10 24
|
mulcld |
|
26 |
|
relogcl |
|
27 |
26
|
adantl |
|
28 |
27
|
recnd |
|
29 |
25 28
|
subcld |
|
30 |
|
inss1 |
|
31 |
|
ssfi |
|
32 |
11 30 31
|
sylancl |
|
33 |
|
simpr |
|
34 |
33
|
elin1d |
|
35 |
34 17
|
syl |
|
36 |
|
nnrp |
|
37 |
36
|
relogcld |
|
38 |
37 36
|
rerpdivcld |
|
39 |
35 38
|
syl |
|
40 |
32 39
|
fsumrecl |
|
41 |
40
|
recnd |
|
42 |
10 41
|
mulcld |
|
43 |
42 28
|
subcld |
|
44 |
10 24 41
|
subdid |
|
45 |
19
|
recnd |
|
46 |
|
0re |
|
47 |
|
ifcl |
|
48 |
37 46 47
|
sylancl |
|
49 |
48
|
recnd |
|
50 |
36
|
rpcnne0d |
|
51 |
|
divsubdir |
|
52 |
45 49 50 51
|
syl3anc |
|
53 |
18 52
|
syl |
|
54 |
53
|
sumeq2dv |
|
55 |
21
|
recnd |
|
56 |
18 55
|
syl |
|
57 |
48 36
|
rerpdivcld |
|
58 |
57
|
recnd |
|
59 |
18 58
|
syl |
|
60 |
14 56 59
|
fsumsub |
|
61 |
|
inss2 |
|
62 |
|
sslin |
|
63 |
61 62
|
mp1i |
|
64 |
35 58
|
syl |
|
65 |
|
eldif |
|
66 |
|
incom |
|
67 |
66
|
ineq2i |
|
68 |
|
inass |
|
69 |
67 68
|
eqtr4i |
|
70 |
69
|
elin2 |
|
71 |
70
|
simplbi2 |
|
72 |
71
|
con3dimp |
|
73 |
65 72
|
sylbi |
|
74 |
73
|
adantl |
|
75 |
74
|
iffalsed |
|
76 |
75
|
oveq1d |
|
77 |
|
eldifi |
|
78 |
77 18
|
sylan2 |
|
79 |
|
div0 |
|
80 |
50 79
|
syl |
|
81 |
78 80
|
syl |
|
82 |
76 81
|
eqtrd |
|
83 |
63 64 82 14
|
fsumss |
|
84 |
|
inss2 |
|
85 |
|
inss1 |
|
86 |
84 85
|
sstri |
|
87 |
86 33
|
sselid |
|
88 |
87
|
iftrued |
|
89 |
88
|
oveq1d |
|
90 |
89
|
sumeq2dv |
|
91 |
83 90
|
eqtr3d |
|
92 |
91
|
oveq2d |
|
93 |
54 60 92
|
3eqtrd |
|
94 |
93
|
oveq2d |
|
95 |
25 42 28
|
nnncan2d |
|
96 |
44 94 95
|
3eqtr4d |
|
97 |
96
|
mpteq2dva |
|
98 |
19 48
|
resubcld |
|
99 |
98 36
|
rerpdivcld |
|
100 |
18 99
|
syl |
|
101 |
14 100
|
fsumrecl |
|
102 |
101
|
recnd |
|
103 |
|
rpssre |
|
104 |
8
|
nncnd |
|
105 |
|
o1const |
|
106 |
103 104 105
|
sylancr |
|
107 |
103
|
a1i |
|
108 |
|
1red |
|
109 |
|
2re |
|
110 |
109
|
a1i |
|
111 |
|
breq1 |
|
112 |
|
breq1 |
|
113 |
37
|
adantr |
|
114 |
|
vmaprm |
|
115 |
114
|
adantl |
|
116 |
115
|
eqcomd |
|
117 |
113 116
|
eqled |
|
118 |
|
vmage0 |
|
119 |
118
|
adantr |
|
120 |
111 112 117 119
|
ifbothda |
|
121 |
19 48
|
subge0d |
|
122 |
120 121
|
mpbird |
|
123 |
98 36 122
|
divge0d |
|
124 |
18 123
|
syl |
|
125 |
14 100 124
|
fsumge0 |
|
126 |
101 125
|
absidd |
|
127 |
17
|
adantl |
|
128 |
127 99
|
syl |
|
129 |
11 128
|
fsumrecl |
|
130 |
109
|
a1i |
|
131 |
127 123
|
syl |
|
132 |
12
|
a1i |
|
133 |
11 128 131 132
|
fsumless |
|
134 |
107
|
sselda |
|
135 |
134
|
flcld |
|
136 |
|
rplogsumlem2 |
|
137 |
135 136
|
syl |
|
138 |
101 129 130 133 137
|
letrd |
|
139 |
126 138
|
eqbrtrd |
|
140 |
139
|
adantrr |
|
141 |
107 102 108 110 140
|
elo1d |
|
142 |
10 102 106 141
|
o1mul2 |
|
143 |
97 142
|
eqeltrrd |
|
144 |
29 43 143
|
o1dif |
|
145 |
7 144
|
mpbid |
|