Metamath Proof Explorer


Theorem rplogsumlem2

Description: Lemma for rplogsum . Equation 9.2.14 of Shapiro, p. 331. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion rplogsumlem2 An=1AΛnifnlogn0n2

Proof

Step Hyp Ref Expression
1 flid AA=A
2 1 oveq2d A1A=1A
3 2 sumeq1d An=1AΛnifnlogn0n=n=1AΛnifnlogn0n
4 fveq2 n=pkΛn=Λpk
5 eleq1 n=pknpk
6 fveq2 n=pklogn=logpk
7 5 6 ifbieq1d n=pkifnlogn0=ifpklogpk0
8 4 7 oveq12d n=pkΛnifnlogn0=Λpkifpklogpk0
9 id n=pkn=pk
10 8 9 oveq12d n=pkΛnifnlogn0n=Λpkifpklogpk0pk
11 zre AA
12 elfznn n1An
13 12 adantl An1An
14 vmacl nΛn
15 13 14 syl An1AΛn
16 13 nnrpd An1An+
17 16 relogcld An1Alogn
18 0re 0
19 ifcl logn0ifnlogn0
20 17 18 19 sylancl An1Aifnlogn0
21 15 20 resubcld An1AΛnifnlogn0
22 21 13 nndivred An1AΛnifnlogn0n
23 22 recnd An1AΛnifnlogn0n
24 simprr An1AΛn=0Λn=0
25 vmaprm nΛn=logn
26 prmnn nn
27 26 nnred nn
28 prmgt1 n1<n
29 27 28 rplogcld nlogn+
30 25 29 eqeltrd nΛn+
31 30 rpne0d nΛn0
32 31 necon2bi Λn=0¬n
33 32 ad2antll An1AΛn=0¬n
34 33 iffalsed An1AΛn=0ifnlogn0=0
35 24 34 oveq12d An1AΛn=0Λnifnlogn0=00
36 0m0e0 00=0
37 35 36 eqtrdi An1AΛn=0Λnifnlogn0=0
38 37 oveq1d An1AΛn=0Λnifnlogn0n=0n
39 12 ad2antrl An1AΛn=0n
40 39 nnrpd An1AΛn=0n+
41 40 rpcnne0d An1AΛn=0nn0
42 div0 nn00n=0
43 41 42 syl An1AΛn=00n=0
44 38 43 eqtrd An1AΛn=0Λnifnlogn0n=0
45 10 11 23 44 fsumvma2 An=1AΛnifnlogn0n=p0Ak=1logAlogpΛpkifpklogpk0pk
46 3 45 eqtr3d An=1AΛnifnlogn0n=p0Ak=1logAlogpΛpkifpklogpk0pk
47 fzfid A2A+1Fin
48 simpr Ap0Ap0A
49 48 elin2d Ap0Ap
50 prmnn pp
51 49 50 syl Ap0Ap
52 51 nnred Ap0Ap
53 11 adantr Ap0AA
54 zcn AA
55 54 abscld AA
56 peano2re AA+1
57 55 56 syl AA+1
58 57 adantr Ap0AA+1
59 elinel1 p0Ap0A
60 elicc2 0Ap0Ap0ppA
61 18 11 60 sylancr Ap0Ap0ppA
62 59 61 syl5ib Ap0Ap0ppA
63 62 imp Ap0Ap0ppA
64 63 simp3d Ap0ApA
65 54 adantr Ap0AA
66 65 abscld Ap0AA
67 53 leabsd Ap0AAA
68 66 lep1d Ap0AAA+1
69 53 66 58 67 68 letrd Ap0AAA+1
70 52 53 58 64 69 letrd Ap0ApA+1
71 prmuz2 pp2
72 49 71 syl Ap0Ap2
73 nn0abscl AA0
74 nn0p1nn A0A+1
75 73 74 syl AA+1
76 75 nnzd AA+1
77 76 adantr Ap0AA+1
78 elfz5 p2A+1p2A+1pA+1
79 72 77 78 syl2anc Ap0Ap2A+1pA+1
80 70 79 mpbird Ap0Ap2A+1
81 80 ex Ap0Ap2A+1
82 81 ssrdv A0A2A+1
83 47 82 ssfid A0AFin
84 fzfid Ap0A1logAlogpFin
85 simprl Ap0Ak1logAlogpp0A
86 85 elin2d Ap0Ak1logAlogpp
87 elfznn k1logAlogpk
88 87 ad2antll Ap0Ak1logAlogpk
89 vmappw pkΛpk=logp
90 86 88 89 syl2anc Ap0Ak1logAlogpΛpk=logp
91 51 adantrr Ap0Ak1logAlogpp
92 91 nnrpd Ap0Ak1logAlogpp+
93 92 relogcld Ap0Ak1logAlogplogp
94 90 93 eqeltrd Ap0Ak1logAlogpΛpk
95 88 nnnn0d Ap0Ak1logAlogpk0
96 nnexpcl pk0pk
97 91 95 96 syl2anc Ap0Ak1logAlogppk
98 97 nnrpd Ap0Ak1logAlogppk+
99 98 relogcld Ap0Ak1logAlogplogpk
100 ifcl logpk0ifpklogpk0
101 99 18 100 sylancl Ap0Ak1logAlogpifpklogpk0
102 94 101 resubcld Ap0Ak1logAlogpΛpkifpklogpk0
103 102 97 nndivred Ap0Ak1logAlogpΛpkifpklogpk0pk
104 103 anassrs Ap0Ak1logAlogpΛpkifpklogpk0pk
105 84 104 fsumrecl Ap0Ak=1logAlogpΛpkifpklogpk0pk
106 83 105 fsumrecl Ap0Ak=1logAlogpΛpkifpklogpk0pk
107 51 nnrpd Ap0Ap+
108 107 relogcld Ap0Alogp
109 uz2m1nn p2p1
110 72 109 syl Ap0Ap1
111 51 110 nnmulcld Ap0App1
112 108 111 nndivred Ap0Alogppp1
113 83 112 fsumrecl Ap0Alogppp1
114 2re 2
115 114 a1i A2
116 18 a1i Ap0A0
117 51 nngt0d Ap0A0<p
118 116 52 53 117 64 ltletrd Ap0A0<A
119 53 118 elrpd Ap0AA+
120 119 relogcld Ap0AlogA
121 prmgt1 p1<p
122 49 121 syl Ap0A1<p
123 52 122 rplogcld Ap0Alogp+
124 120 123 rerpdivcld Ap0AlogAlogp
125 123 rpcnd Ap0Alogp
126 125 mulid2d Ap0A1logp=logp
127 107 119 logled Ap0ApAlogplogA
128 64 127 mpbid Ap0AlogplogA
129 126 128 eqbrtrd Ap0A1logplogA
130 1re 1
131 130 a1i Ap0A1
132 131 120 123 lemuldivd Ap0A1logplogA1logAlogp
133 129 132 mpbid Ap0A1logAlogp
134 flge1nn logAlogp1logAlogplogAlogp
135 124 133 134 syl2anc Ap0AlogAlogp
136 nnuz =1
137 135 136 eleqtrdi Ap0AlogAlogp1
138 103 recnd Ap0Ak1logAlogpΛpkifpklogpk0pk
139 138 anassrs Ap0Ak1logAlogpΛpkifpklogpk0pk
140 oveq2 k=1pk=p1
141 140 fveq2d k=1Λpk=Λp1
142 140 eleq1d k=1pkp1
143 140 fveq2d k=1logpk=logp1
144 142 143 ifbieq1d k=1ifpklogpk0=ifp1logp10
145 141 144 oveq12d k=1Λpkifpklogpk0=Λp1ifp1logp10
146 145 140 oveq12d k=1Λpkifpklogpk0pk=Λp1ifp1logp10p1
147 137 139 146 fsum1p Ap0Ak=1logAlogpΛpkifpklogpk0pk=Λp1ifp1logp10p1+k=1+1logAlogpΛpkifpklogpk0pk
148 51 nncnd Ap0Ap
149 148 exp1d Ap0Ap1=p
150 149 fveq2d Ap0AΛp1=Λp
151 vmaprm pΛp=logp
152 49 151 syl Ap0AΛp=logp
153 150 152 eqtrd Ap0AΛp1=logp
154 149 49 eqeltrd Ap0Ap1
155 154 iftrued Ap0Aifp1logp10=logp1
156 149 fveq2d Ap0Alogp1=logp
157 155 156 eqtrd Ap0Aifp1logp10=logp
158 153 157 oveq12d Ap0AΛp1ifp1logp10=logplogp
159 125 subidd Ap0Alogplogp=0
160 158 159 eqtrd Ap0AΛp1ifp1logp10=0
161 160 149 oveq12d Ap0AΛp1ifp1logp10p1=0p
162 107 rpcnne0d Ap0App0
163 div0 pp00p=0
164 162 163 syl Ap0A0p=0
165 161 164 eqtrd Ap0AΛp1ifp1logp10p1=0
166 1p1e2 1+1=2
167 166 oveq1i 1+1logAlogp=2logAlogp
168 167 a1i Ap0A1+1logAlogp=2logAlogp
169 elfzuz k2logAlogpk2
170 eluz2nn k2k
171 169 170 syl k2logAlogpk
172 171 167 eleq2s k1+1logAlogpk
173 49 172 89 syl2an Ap0Ak1+1logAlogpΛpk=logp
174 51 adantr Ap0Ak1+1logAlogpp
175 nnq pp
176 174 175 syl Ap0Ak1+1logAlogpp
177 169 167 eleq2s k1+1logAlogpk2
178 177 adantl Ap0Ak1+1logAlogpk2
179 expnprm pk2¬pk
180 176 178 179 syl2anc Ap0Ak1+1logAlogp¬pk
181 180 iffalsed Ap0Ak1+1logAlogpifpklogpk0=0
182 173 181 oveq12d Ap0Ak1+1logAlogpΛpkifpklogpk0=logp0
183 125 subid1d Ap0Alogp0=logp
184 183 adantr Ap0Ak1+1logAlogplogp0=logp
185 182 184 eqtrd Ap0Ak1+1logAlogpΛpkifpklogpk0=logp
186 185 oveq1d Ap0Ak1+1logAlogpΛpkifpklogpk0pk=logppk
187 168 186 sumeq12dv Ap0Ak=1+1logAlogpΛpkifpklogpk0pk=k=2logAlogplogppk
188 165 187 oveq12d Ap0AΛp1ifp1logp10p1+k=1+1logAlogpΛpkifpklogpk0pk=0+k=2logAlogplogppk
189 fzfid Ap0A2logAlogpFin
190 108 adantr Ap0Aklogp
191 nnnn0 kk0
192 51 191 96 syl2an Ap0Akpk
193 190 192 nndivred Ap0Aklogppk
194 171 193 sylan2 Ap0Ak2logAlogplogppk
195 189 194 fsumrecl Ap0Ak=2logAlogplogppk
196 195 recnd Ap0Ak=2logAlogplogppk
197 196 addid2d Ap0A0+k=2logAlogplogppk=k=2logAlogplogppk
198 147 188 197 3eqtrd Ap0Ak=1logAlogpΛpkifpklogpk0pk=k=2logAlogplogppk
199 107 rpreccld Ap0A1p+
200 124 flcld Ap0AlogAlogp
201 200 peano2zd Ap0AlogAlogp+1
202 199 201 rpexpcld Ap0A1plogAlogp+1+
203 202 rpge0d Ap0A01plogAlogp+1
204 51 nnrecred Ap0A1p
205 204 resqcld Ap0A1p2
206 135 peano2nnd Ap0AlogAlogp+1
207 206 nnnn0d Ap0AlogAlogp+10
208 204 207 reexpcld Ap0A1plogAlogp+1
209 205 208 subge02d Ap0A01plogAlogp+11p21plogAlogp+11p2
210 203 209 mpbid Ap0A1p21plogAlogp+11p2
211 110 nnrpd Ap0Ap1+
212 211 rpcnne0d Ap0Ap1p10
213 199 rpcnd Ap0A1p
214 dmdcan p1p10pp01pp1p1pp1=1pp
215 212 162 213 214 syl3anc Ap0Ap1p1pp1=1pp
216 131 recnd Ap0A1
217 divsubdir p1pp0p1p=pp1p
218 148 216 162 217 syl3anc Ap0Ap1p=pp1p
219 divid pp0pp=1
220 162 219 syl Ap0App=1
221 220 oveq1d Ap0App1p=11p
222 218 221 eqtrd Ap0Ap1p=11p
223 divdiv1 1pp0p1p101pp1=1pp1
224 216 162 212 223 syl3anc Ap0A1pp1=1pp1
225 222 224 oveq12d Ap0Ap1p1pp1=11p1pp1
226 51 nnne0d Ap0Ap0
227 213 148 226 divrecd Ap0A1pp=1p1p
228 213 sqvald Ap0A1p2=1p1p
229 227 228 eqtr4d Ap0A1pp=1p2
230 215 225 229 3eqtr3d Ap0A11p1pp1=1p2
231 210 230 breqtrrd Ap0A1p21plogAlogp+111p1pp1
232 205 208 resubcld Ap0A1p21plogAlogp+1
233 111 nnrecred Ap0A1pp1
234 resubcl 11p11p
235 130 204 234 sylancr Ap0A11p
236 recgt1 p0<p1<p1p<1
237 52 117 236 syl2anc Ap0A1<p1p<1
238 122 237 mpbid Ap0A1p<1
239 posdif 1p11p<10<11p
240 204 130 239 sylancl Ap0A1p<10<11p
241 238 240 mpbid Ap0A0<11p
242 ledivmul 1p21plogAlogp+11pp111p0<11p1p21plogAlogp+111p1pp11p21plogAlogp+111p1pp1
243 232 233 235 241 242 syl112anc Ap0A1p21plogAlogp+111p1pp11p21plogAlogp+111p1pp1
244 231 243 mpbird Ap0A1p21plogAlogp+111p1pp1
245 235 241 elrpd Ap0A11p+
246 232 245 rerpdivcld Ap0A1p21plogAlogp+111p
247 246 233 123 lemul2d Ap0A1p21plogAlogp+111p1pp1logp1p21plogAlogp+111plogp1pp1
248 244 247 mpbid Ap0Alogp1p21plogAlogp+111plogp1pp1
249 125 adantr Ap0Aklogp
250 192 nncnd Ap0Akpk
251 192 nnne0d Ap0Akpk0
252 249 250 251 divrecd Ap0Aklogppk=logp1pk
253 148 adantr Ap0Akp
254 51 adantr Ap0Akp
255 254 nnne0d Ap0Akp0
256 nnz kk
257 256 adantl Ap0Akk
258 253 255 257 exprecd Ap0Ak1pk=1pk
259 258 oveq2d Ap0Aklogp1pk=logp1pk
260 252 259 eqtr4d Ap0Aklogppk=logp1pk
261 171 260 sylan2 Ap0Ak2logAlogplogppk=logp1pk
262 261 sumeq2dv Ap0Ak=2logAlogplogppk=k=2logAlogplogp1pk
263 171 nnnn0d k2logAlogpk0
264 expcl 1pk01pk
265 213 263 264 syl2an Ap0Ak2logAlogp1pk
266 189 125 265 fsummulc2 Ap0Alogpk=2logAlogp1pk=k=2logAlogplogp1pk
267 fzval3 logAlogp2logAlogp=2..^logAlogp+1
268 200 267 syl Ap0A2logAlogp=2..^logAlogp+1
269 268 sumeq1d Ap0Ak=2logAlogp1pk=k2..^logAlogp+11pk
270 204 238 ltned Ap0A1p1
271 2nn0 20
272 271 a1i Ap0A20
273 eluzp1p1 logAlogp1logAlogp+11+1
274 137 273 syl Ap0AlogAlogp+11+1
275 df-2 2=1+1
276 275 fveq2i 2=1+1
277 274 276 eleqtrrdi Ap0AlogAlogp+12
278 213 270 272 277 geoserg Ap0Ak2..^logAlogp+11pk=1p21plogAlogp+111p
279 269 278 eqtrd Ap0Ak=2logAlogp1pk=1p21plogAlogp+111p
280 279 oveq2d Ap0Alogpk=2logAlogp1pk=logp1p21plogAlogp+111p
281 262 266 280 3eqtr2d Ap0Ak=2logAlogplogppk=logp1p21plogAlogp+111p
282 111 nncnd Ap0App1
283 111 nnne0d Ap0App10
284 125 282 283 divrecd Ap0Alogppp1=logp1pp1
285 248 281 284 3brtr4d Ap0Ak=2logAlogplogppklogppp1
286 198 285 eqbrtrd Ap0Ak=1logAlogpΛpkifpklogpk0pklogppp1
287 83 105 112 286 fsumle Ap0Ak=1logAlogpΛpkifpklogpk0pkp0Alogppp1
288 elfzuz p2A+1p2
289 eluz2nn p2p
290 288 289 syl p2A+1p
291 290 adantl Ap2A+1p
292 291 nnred Ap2A+1p
293 288 adantl Ap2A+1p2
294 eluz2gt1 p21<p
295 293 294 syl Ap2A+11<p
296 292 295 rplogcld Ap2A+1logp+
297 293 109 syl Ap2A+1p1
298 291 297 nnmulcld Ap2A+1pp1
299 298 nnrpd Ap2A+1pp1+
300 296 299 rpdivcld Ap2A+1logppp1+
301 300 rpred Ap2A+1logppp1
302 47 301 fsumrecl Ap=2A+1logppp1
303 300 rpge0d Ap2A+10logppp1
304 47 301 303 82 fsumless Ap0Alogppp1p=2A+1logppp1
305 rplogsumlem1 A+1p=2A+1logppp12
306 75 305 syl Ap=2A+1logppp12
307 113 302 115 304 306 letrd Ap0Alogppp12
308 106 113 115 287 307 letrd Ap0Ak=1logAlogpΛpkifpklogpk0pk2
309 46 308 eqbrtrd An=1AΛnifnlogn0n2