Step |
Hyp |
Ref |
Expression |
1 |
|
flid |
|
2 |
1
|
oveq2d |
|
3 |
2
|
sumeq1d |
|
4 |
|
fveq2 |
|
5 |
|
eleq1 |
|
6 |
|
fveq2 |
|
7 |
5 6
|
ifbieq1d |
|
8 |
4 7
|
oveq12d |
|
9 |
|
id |
|
10 |
8 9
|
oveq12d |
|
11 |
|
zre |
|
12 |
|
elfznn |
|
13 |
12
|
adantl |
|
14 |
|
vmacl |
|
15 |
13 14
|
syl |
|
16 |
13
|
nnrpd |
|
17 |
16
|
relogcld |
|
18 |
|
0re |
|
19 |
|
ifcl |
|
20 |
17 18 19
|
sylancl |
|
21 |
15 20
|
resubcld |
|
22 |
21 13
|
nndivred |
|
23 |
22
|
recnd |
|
24 |
|
simprr |
|
25 |
|
vmaprm |
|
26 |
|
prmnn |
|
27 |
26
|
nnred |
|
28 |
|
prmgt1 |
|
29 |
27 28
|
rplogcld |
|
30 |
25 29
|
eqeltrd |
|
31 |
30
|
rpne0d |
|
32 |
31
|
necon2bi |
|
33 |
32
|
ad2antll |
|
34 |
33
|
iffalsed |
|
35 |
24 34
|
oveq12d |
|
36 |
|
0m0e0 |
|
37 |
35 36
|
eqtrdi |
|
38 |
37
|
oveq1d |
|
39 |
12
|
ad2antrl |
|
40 |
39
|
nnrpd |
|
41 |
40
|
rpcnne0d |
|
42 |
|
div0 |
|
43 |
41 42
|
syl |
|
44 |
38 43
|
eqtrd |
|
45 |
10 11 23 44
|
fsumvma2 |
|
46 |
3 45
|
eqtr3d |
|
47 |
|
fzfid |
|
48 |
|
simpr |
|
49 |
48
|
elin2d |
|
50 |
|
prmnn |
|
51 |
49 50
|
syl |
|
52 |
51
|
nnred |
|
53 |
11
|
adantr |
|
54 |
|
zcn |
|
55 |
54
|
abscld |
|
56 |
|
peano2re |
|
57 |
55 56
|
syl |
|
58 |
57
|
adantr |
|
59 |
|
elinel1 |
|
60 |
|
elicc2 |
|
61 |
18 11 60
|
sylancr |
|
62 |
59 61
|
syl5ib |
|
63 |
62
|
imp |
|
64 |
63
|
simp3d |
|
65 |
54
|
adantr |
|
66 |
65
|
abscld |
|
67 |
53
|
leabsd |
|
68 |
66
|
lep1d |
|
69 |
53 66 58 67 68
|
letrd |
|
70 |
52 53 58 64 69
|
letrd |
|
71 |
|
prmuz2 |
|
72 |
49 71
|
syl |
|
73 |
|
nn0abscl |
|
74 |
|
nn0p1nn |
|
75 |
73 74
|
syl |
|
76 |
75
|
nnzd |
|
77 |
76
|
adantr |
|
78 |
|
elfz5 |
|
79 |
72 77 78
|
syl2anc |
|
80 |
70 79
|
mpbird |
|
81 |
80
|
ex |
|
82 |
81
|
ssrdv |
|
83 |
47 82
|
ssfid |
|
84 |
|
fzfid |
|
85 |
|
simprl |
|
86 |
85
|
elin2d |
|
87 |
|
elfznn |
|
88 |
87
|
ad2antll |
|
89 |
|
vmappw |
|
90 |
86 88 89
|
syl2anc |
|
91 |
51
|
adantrr |
|
92 |
91
|
nnrpd |
|
93 |
92
|
relogcld |
|
94 |
90 93
|
eqeltrd |
|
95 |
88
|
nnnn0d |
|
96 |
|
nnexpcl |
|
97 |
91 95 96
|
syl2anc |
|
98 |
97
|
nnrpd |
|
99 |
98
|
relogcld |
|
100 |
|
ifcl |
|
101 |
99 18 100
|
sylancl |
|
102 |
94 101
|
resubcld |
|
103 |
102 97
|
nndivred |
|
104 |
103
|
anassrs |
|
105 |
84 104
|
fsumrecl |
|
106 |
83 105
|
fsumrecl |
|
107 |
51
|
nnrpd |
|
108 |
107
|
relogcld |
|
109 |
|
uz2m1nn |
|
110 |
72 109
|
syl |
|
111 |
51 110
|
nnmulcld |
|
112 |
108 111
|
nndivred |
|
113 |
83 112
|
fsumrecl |
|
114 |
|
2re |
|
115 |
114
|
a1i |
|
116 |
18
|
a1i |
|
117 |
51
|
nngt0d |
|
118 |
116 52 53 117 64
|
ltletrd |
|
119 |
53 118
|
elrpd |
|
120 |
119
|
relogcld |
|
121 |
|
prmgt1 |
|
122 |
49 121
|
syl |
|
123 |
52 122
|
rplogcld |
|
124 |
120 123
|
rerpdivcld |
|
125 |
123
|
rpcnd |
|
126 |
125
|
mulid2d |
|
127 |
107 119
|
logled |
|
128 |
64 127
|
mpbid |
|
129 |
126 128
|
eqbrtrd |
|
130 |
|
1re |
|
131 |
130
|
a1i |
|
132 |
131 120 123
|
lemuldivd |
|
133 |
129 132
|
mpbid |
|
134 |
|
flge1nn |
|
135 |
124 133 134
|
syl2anc |
|
136 |
|
nnuz |
|
137 |
135 136
|
eleqtrdi |
|
138 |
103
|
recnd |
|
139 |
138
|
anassrs |
|
140 |
|
oveq2 |
|
141 |
140
|
fveq2d |
|
142 |
140
|
eleq1d |
|
143 |
140
|
fveq2d |
|
144 |
142 143
|
ifbieq1d |
|
145 |
141 144
|
oveq12d |
|
146 |
145 140
|
oveq12d |
|
147 |
137 139 146
|
fsum1p |
|
148 |
51
|
nncnd |
|
149 |
148
|
exp1d |
|
150 |
149
|
fveq2d |
|
151 |
|
vmaprm |
|
152 |
49 151
|
syl |
|
153 |
150 152
|
eqtrd |
|
154 |
149 49
|
eqeltrd |
|
155 |
154
|
iftrued |
|
156 |
149
|
fveq2d |
|
157 |
155 156
|
eqtrd |
|
158 |
153 157
|
oveq12d |
|
159 |
125
|
subidd |
|
160 |
158 159
|
eqtrd |
|
161 |
160 149
|
oveq12d |
|
162 |
107
|
rpcnne0d |
|
163 |
|
div0 |
|
164 |
162 163
|
syl |
|
165 |
161 164
|
eqtrd |
|
166 |
|
1p1e2 |
|
167 |
166
|
oveq1i |
|
168 |
167
|
a1i |
|
169 |
|
elfzuz |
|
170 |
|
eluz2nn |
|
171 |
169 170
|
syl |
|
172 |
171 167
|
eleq2s |
|
173 |
49 172 89
|
syl2an |
|
174 |
51
|
adantr |
|
175 |
|
nnq |
|
176 |
174 175
|
syl |
|
177 |
169 167
|
eleq2s |
|
178 |
177
|
adantl |
|
179 |
|
expnprm |
|
180 |
176 178 179
|
syl2anc |
|
181 |
180
|
iffalsed |
|
182 |
173 181
|
oveq12d |
|
183 |
125
|
subid1d |
|
184 |
183
|
adantr |
|
185 |
182 184
|
eqtrd |
|
186 |
185
|
oveq1d |
|
187 |
168 186
|
sumeq12dv |
|
188 |
165 187
|
oveq12d |
|
189 |
|
fzfid |
|
190 |
108
|
adantr |
|
191 |
|
nnnn0 |
|
192 |
51 191 96
|
syl2an |
|
193 |
190 192
|
nndivred |
|
194 |
171 193
|
sylan2 |
|
195 |
189 194
|
fsumrecl |
|
196 |
195
|
recnd |
|
197 |
196
|
addid2d |
|
198 |
147 188 197
|
3eqtrd |
|
199 |
107
|
rpreccld |
|
200 |
124
|
flcld |
|
201 |
200
|
peano2zd |
|
202 |
199 201
|
rpexpcld |
|
203 |
202
|
rpge0d |
|
204 |
51
|
nnrecred |
|
205 |
204
|
resqcld |
|
206 |
135
|
peano2nnd |
|
207 |
206
|
nnnn0d |
|
208 |
204 207
|
reexpcld |
|
209 |
205 208
|
subge02d |
|
210 |
203 209
|
mpbid |
|
211 |
110
|
nnrpd |
|
212 |
211
|
rpcnne0d |
|
213 |
199
|
rpcnd |
|
214 |
|
dmdcan |
|
215 |
212 162 213 214
|
syl3anc |
|
216 |
131
|
recnd |
|
217 |
|
divsubdir |
|
218 |
148 216 162 217
|
syl3anc |
|
219 |
|
divid |
|
220 |
162 219
|
syl |
|
221 |
220
|
oveq1d |
|
222 |
218 221
|
eqtrd |
|
223 |
|
divdiv1 |
|
224 |
216 162 212 223
|
syl3anc |
|
225 |
222 224
|
oveq12d |
|
226 |
51
|
nnne0d |
|
227 |
213 148 226
|
divrecd |
|
228 |
213
|
sqvald |
|
229 |
227 228
|
eqtr4d |
|
230 |
215 225 229
|
3eqtr3d |
|
231 |
210 230
|
breqtrrd |
|
232 |
205 208
|
resubcld |
|
233 |
111
|
nnrecred |
|
234 |
|
resubcl |
|
235 |
130 204 234
|
sylancr |
|
236 |
|
recgt1 |
|
237 |
52 117 236
|
syl2anc |
|
238 |
122 237
|
mpbid |
|
239 |
|
posdif |
|
240 |
204 130 239
|
sylancl |
|
241 |
238 240
|
mpbid |
|
242 |
|
ledivmul |
|
243 |
232 233 235 241 242
|
syl112anc |
|
244 |
231 243
|
mpbird |
|
245 |
235 241
|
elrpd |
|
246 |
232 245
|
rerpdivcld |
|
247 |
246 233 123
|
lemul2d |
|
248 |
244 247
|
mpbid |
|
249 |
125
|
adantr |
|
250 |
192
|
nncnd |
|
251 |
192
|
nnne0d |
|
252 |
249 250 251
|
divrecd |
|
253 |
148
|
adantr |
|
254 |
51
|
adantr |
|
255 |
254
|
nnne0d |
|
256 |
|
nnz |
|
257 |
256
|
adantl |
|
258 |
253 255 257
|
exprecd |
|
259 |
258
|
oveq2d |
|
260 |
252 259
|
eqtr4d |
|
261 |
171 260
|
sylan2 |
|
262 |
261
|
sumeq2dv |
|
263 |
171
|
nnnn0d |
|
264 |
|
expcl |
|
265 |
213 263 264
|
syl2an |
|
266 |
189 125 265
|
fsummulc2 |
|
267 |
|
fzval3 |
|
268 |
200 267
|
syl |
|
269 |
268
|
sumeq1d |
|
270 |
204 238
|
ltned |
|
271 |
|
2nn0 |
|
272 |
271
|
a1i |
|
273 |
|
eluzp1p1 |
|
274 |
137 273
|
syl |
|
275 |
|
df-2 |
|
276 |
275
|
fveq2i |
|
277 |
274 276
|
eleqtrrdi |
|
278 |
213 270 272 277
|
geoserg |
|
279 |
269 278
|
eqtrd |
|
280 |
279
|
oveq2d |
|
281 |
262 266 280
|
3eqtr2d |
|
282 |
111
|
nncnd |
|
283 |
111
|
nnne0d |
|
284 |
125 282 283
|
divrecd |
|
285 |
248 281 284
|
3brtr4d |
|
286 |
198 285
|
eqbrtrd |
|
287 |
83 105 112 286
|
fsumle |
|
288 |
|
elfzuz |
|
289 |
|
eluz2nn |
|
290 |
288 289
|
syl |
|
291 |
290
|
adantl |
|
292 |
291
|
nnred |
|
293 |
288
|
adantl |
|
294 |
|
eluz2gt1 |
|
295 |
293 294
|
syl |
|
296 |
292 295
|
rplogcld |
|
297 |
293 109
|
syl |
|
298 |
291 297
|
nnmulcld |
|
299 |
298
|
nnrpd |
|
300 |
296 299
|
rpdivcld |
|
301 |
300
|
rpred |
|
302 |
47 301
|
fsumrecl |
|
303 |
300
|
rpge0d |
|
304 |
47 301 303 82
|
fsumless |
|
305 |
|
rplogsumlem1 |
|
306 |
75 305
|
syl |
|
307 |
113 302 115 304 306
|
letrd |
|
308 |
106 113 115 287 307
|
letrd |
|
309 |
46 308
|
eqbrtrd |
|