Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq1d |
|
3 |
2
|
eqeq1d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
5
|
oveq1d |
|
7 |
6
|
eqeq1d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
oveq1d |
|
11 |
10
|
eqeq1d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq1d |
|
15 |
14
|
eqeq1d |
|
16 |
15
|
imbi2d |
|
17 |
|
nncn |
|
18 |
17
|
exp1d |
|
19 |
18
|
oveq1d |
|
20 |
19
|
adantr |
|
21 |
20
|
eqeq1d |
|
22 |
21
|
biimpar |
|
23 |
|
df-3an |
|
24 |
|
simpl1 |
|
25 |
24
|
nncnd |
|
26 |
|
simpl3 |
|
27 |
26
|
nnnn0d |
|
28 |
25 27
|
expp1d |
|
29 |
|
simp1 |
|
30 |
|
nnnn0 |
|
31 |
30
|
3ad2ant3 |
|
32 |
29 31
|
nnexpcld |
|
33 |
32
|
nnzd |
|
34 |
33
|
adantr |
|
35 |
34
|
zcnd |
|
36 |
35 25
|
mulcomd |
|
37 |
28 36
|
eqtrd |
|
38 |
37
|
oveq2d |
|
39 |
|
simpl2 |
|
40 |
32
|
adantr |
|
41 |
|
nnz |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
nnz |
|
44 |
43
|
3ad2ant2 |
|
45 |
42 44
|
gcdcomd |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
biimpa |
|
48 |
|
rpmulgcd |
|
49 |
39 24 40 47 48
|
syl31anc |
|
50 |
38 49
|
eqtrd |
|
51 |
|
peano2nn |
|
52 |
51
|
3ad2ant3 |
|
53 |
52
|
adantr |
|
54 |
53
|
nnnn0d |
|
55 |
24 54
|
nnexpcld |
|
56 |
55
|
nnzd |
|
57 |
44
|
adantr |
|
58 |
56 57
|
gcdcomd |
|
59 |
34 57
|
gcdcomd |
|
60 |
50 58 59
|
3eqtr4d |
|
61 |
60
|
eqeq1d |
|
62 |
61
|
biimprd |
|
63 |
23 62
|
sylanbr |
|
64 |
63
|
an32s |
|
65 |
64
|
expcom |
|
66 |
65
|
a2d |
|
67 |
4 8 12 16 22 66
|
nnind |
|
68 |
67
|
expd |
|
69 |
68
|
com12 |
|
70 |
69
|
3impia |
|