Metamath Proof Explorer


Theorem rpltrp

Description: For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion rpltrp x + y + y < x

Proof

Step Hyp Ref Expression
1 rphalfcl x + x 2 +
2 breq1 y = x 2 y < x x 2 < x
3 2 adantl x + y = x 2 y < x x 2 < x
4 rphalflt x + x 2 < x
5 1 3 4 rspcedvd x + y + y < x
6 5 rgen x + y + y < x