Metamath Proof Explorer


Theorem rpmsubg

Description: The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m M=mulGrpfld𝑠0
Assertion rpmsubg +SubGrpM

Proof

Step Hyp Ref Expression
1 cnmgpabl.m M=mulGrpfld𝑠0
2 rpcn x+x
3 rpne0 x+x0
4 rpmulcl x+y+xy+
5 1rp 1+
6 rpreccl x+1x+
7 1 2 3 4 5 6 cnmsubglem +SubGrpM