Metamath Proof Explorer


Theorem rpmsubg

Description: The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis cnmgpabl.m M = mulGrp fld 𝑠 0
Assertion rpmsubg + SubGrp M

Proof

Step Hyp Ref Expression
1 cnmgpabl.m M = mulGrp fld 𝑠 0
2 rpcn x + x
3 rpne0 x + x 0
4 rpmulcl x + y + x y +
5 1rp 1 +
6 rpreccl x + 1 x +
7 1 2 3 4 5 6 cnmsubglem + SubGrp M