Metamath Proof Explorer


Theorem rpmulgcd2

Description: If M is relatively prime to N , then the GCD of K with M x. N is the product of the GCDs with M and N respectively. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion rpmulgcd2 KMNMgcdN=1Kgcd M N=KgcdMKgcdN

Proof

Step Hyp Ref Expression
1 simpl1 KMNMgcdN=1K
2 simpl2 KMNMgcdN=1M
3 simpl3 KMNMgcdN=1N
4 2 3 zmulcld KMNMgcdN=1 M N
5 1 4 gcdcld KMNMgcdN=1Kgcd M N0
6 1 2 gcdcld KMNMgcdN=1KgcdM0
7 1 3 gcdcld KMNMgcdN=1KgcdN0
8 6 7 nn0mulcld KMNMgcdN=1KgcdMKgcdN0
9 mulgcddvds KMNKgcd M NKgcdMKgcdN
10 9 adantr KMNMgcdN=1Kgcd M NKgcdMKgcdN
11 gcddvds KMKgcdMKKgcdMM
12 1 2 11 syl2anc KMNMgcdN=1KgcdMKKgcdMM
13 12 simpld KMNMgcdN=1KgcdMK
14 gcddvds KNKgcdNKKgcdNN
15 1 3 14 syl2anc KMNMgcdN=1KgcdNKKgcdNN
16 15 simpld KMNMgcdN=1KgcdNK
17 6 nn0zd KMNMgcdN=1KgcdM
18 7 nn0zd KMNMgcdN=1KgcdN
19 17 18 gcdcld KMNMgcdN=1KgcdMgcdKgcdN0
20 19 nn0zd KMNMgcdN=1KgcdMgcdKgcdN
21 gcddvds KgcdMKgcdNKgcdMgcdKgcdNKgcdMKgcdMgcdKgcdNKgcdN
22 17 18 21 syl2anc KMNMgcdN=1KgcdMgcdKgcdNKgcdMKgcdMgcdKgcdNKgcdN
23 22 simpld KMNMgcdN=1KgcdMgcdKgcdNKgcdM
24 12 simprd KMNMgcdN=1KgcdMM
25 20 17 2 23 24 dvdstrd KMNMgcdN=1KgcdMgcdKgcdNM
26 22 simprd KMNMgcdN=1KgcdMgcdKgcdNKgcdN
27 15 simprd KMNMgcdN=1KgcdNN
28 20 18 3 26 27 dvdstrd KMNMgcdN=1KgcdMgcdKgcdNN
29 dvdsgcd KgcdMgcdKgcdNMNKgcdMgcdKgcdNMKgcdMgcdKgcdNNKgcdMgcdKgcdNMgcdN
30 20 2 3 29 syl3anc KMNMgcdN=1KgcdMgcdKgcdNMKgcdMgcdKgcdNNKgcdMgcdKgcdNMgcdN
31 25 28 30 mp2and KMNMgcdN=1KgcdMgcdKgcdNMgcdN
32 simpr KMNMgcdN=1MgcdN=1
33 31 32 breqtrd KMNMgcdN=1KgcdMgcdKgcdN1
34 dvds1 KgcdMgcdKgcdN0KgcdMgcdKgcdN1KgcdMgcdKgcdN=1
35 19 34 syl KMNMgcdN=1KgcdMgcdKgcdN1KgcdMgcdKgcdN=1
36 33 35 mpbid KMNMgcdN=1KgcdMgcdKgcdN=1
37 coprmdvds2 KgcdMKgcdNKKgcdMgcdKgcdN=1KgcdMKKgcdNKKgcdMKgcdNK
38 17 18 1 36 37 syl31anc KMNMgcdN=1KgcdMKKgcdNKKgcdMKgcdNK
39 13 16 38 mp2and KMNMgcdN=1KgcdMKgcdNK
40 dvdscmul KgcdNNKgcdMKgcdNNKgcdMKgcdNKgcdM N
41 18 3 17 40 syl3anc KMNMgcdN=1KgcdNNKgcdMKgcdNKgcdM N
42 dvdsmulc KgcdMMNKgcdMMKgcdM N M N
43 17 2 3 42 syl3anc KMNMgcdN=1KgcdMMKgcdM N M N
44 17 18 zmulcld KMNMgcdN=1KgcdMKgcdN
45 17 3 zmulcld KMNMgcdN=1KgcdM N
46 dvdstr KgcdMKgcdNKgcdM N M NKgcdMKgcdNKgcdM NKgcdM N M NKgcdMKgcdN M N
47 44 45 4 46 syl3anc KMNMgcdN=1KgcdMKgcdNKgcdM NKgcdM N M NKgcdMKgcdN M N
48 41 43 47 syl2and KMNMgcdN=1KgcdNNKgcdMMKgcdMKgcdN M N
49 27 24 48 mp2and KMNMgcdN=1KgcdMKgcdN M N
50 dvdsgcd KgcdMKgcdNK M NKgcdMKgcdNKKgcdMKgcdN M NKgcdMKgcdNKgcd M N
51 44 1 4 50 syl3anc KMNMgcdN=1KgcdMKgcdNKKgcdMKgcdN M NKgcdMKgcdNKgcd M N
52 39 49 51 mp2and KMNMgcdN=1KgcdMKgcdNKgcd M N
53 dvdseq Kgcd M N0KgcdMKgcdN0Kgcd M NKgcdMKgcdNKgcdMKgcdNKgcd M NKgcd M N=KgcdMKgcdN
54 5 8 10 52 53 syl22anc KMNMgcdN=1Kgcd M N=KgcdMKgcdN