Description: If M is relatively prime to N , then the GCD of K with M x. N is the product of the GCDs with M and N respectively. (Contributed by Mario Carneiro, 2-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rpmulgcd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | simpl2 | |
|
3 | simpl3 | |
|
4 | 2 3 | zmulcld | |
5 | 1 4 | gcdcld | |
6 | 1 2 | gcdcld | |
7 | 1 3 | gcdcld | |
8 | 6 7 | nn0mulcld | |
9 | mulgcddvds | |
|
10 | 9 | adantr | |
11 | gcddvds | |
|
12 | 1 2 11 | syl2anc | |
13 | 12 | simpld | |
14 | gcddvds | |
|
15 | 1 3 14 | syl2anc | |
16 | 15 | simpld | |
17 | 6 | nn0zd | |
18 | 7 | nn0zd | |
19 | 17 18 | gcdcld | |
20 | 19 | nn0zd | |
21 | gcddvds | |
|
22 | 17 18 21 | syl2anc | |
23 | 22 | simpld | |
24 | 12 | simprd | |
25 | 20 17 2 23 24 | dvdstrd | |
26 | 22 | simprd | |
27 | 15 | simprd | |
28 | 20 18 3 26 27 | dvdstrd | |
29 | dvdsgcd | |
|
30 | 20 2 3 29 | syl3anc | |
31 | 25 28 30 | mp2and | |
32 | simpr | |
|
33 | 31 32 | breqtrd | |
34 | dvds1 | |
|
35 | 19 34 | syl | |
36 | 33 35 | mpbid | |
37 | coprmdvds2 | |
|
38 | 17 18 1 36 37 | syl31anc | |
39 | 13 16 38 | mp2and | |
40 | dvdscmul | |
|
41 | 18 3 17 40 | syl3anc | |
42 | dvdsmulc | |
|
43 | 17 2 3 42 | syl3anc | |
44 | 17 18 | zmulcld | |
45 | 17 3 | zmulcld | |
46 | dvdstr | |
|
47 | 44 45 4 46 | syl3anc | |
48 | 41 43 47 | syl2and | |
49 | 27 24 48 | mp2and | |
50 | dvdsgcd | |
|
51 | 44 1 4 50 | syl3anc | |
52 | 39 49 51 | mp2and | |
53 | dvdseq | |
|
54 | 5 8 10 52 53 | syl22anc | |