Metamath Proof Explorer


Theorem rpnnen1lem1

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem1 x F x

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 3 mptex k sup T < k V
6 2 fvmpt2 x k sup T < k V F x = k sup T < k
7 5 6 mpan2 x F x = k sup T < k
8 ssrab2 n | n k < x
9 1 8 eqsstri T
10 9 a1i x k T
11 nnre k k
12 remulcl k x k x
13 12 ancoms x k k x
14 11 13 sylan2 x k k x
15 btwnz k x n n < k x n k x < n
16 15 simpld k x n n < k x
17 14 16 syl x k n n < k x
18 zre n n
19 18 adantl x k n n
20 simpll x k n x
21 nngt0 k 0 < k
22 11 21 jca k k 0 < k
23 22 ad2antlr x k n k 0 < k
24 ltdivmul n x k 0 < k n k < x n < k x
25 19 20 23 24 syl3anc x k n n k < x n < k x
26 25 rexbidva x k n n k < x n n < k x
27 17 26 mpbird x k n n k < x
28 rabn0 n | n k < x n n k < x
29 27 28 sylibr x k n | n k < x
30 1 neeq1i T n | n k < x
31 29 30 sylibr x k T
32 1 rabeq2i n T n n k < x
33 11 ad2antlr x k n k
34 33 20 12 syl2anc x k n k x
35 ltle n k x n < k x n k x
36 19 34 35 syl2anc x k n n < k x n k x
37 25 36 sylbid x k n n k < x n k x
38 37 impr x k n n k < x n k x
39 32 38 sylan2b x k n T n k x
40 39 ralrimiva x k n T n k x
41 breq2 y = k x n y n k x
42 41 ralbidv y = k x n T n y n T n k x
43 42 rspcev k x n T n k x y n T n y
44 14 40 43 syl2anc x k y n T n y
45 suprzcl T T y n T n y sup T < T
46 10 31 44 45 syl3anc x k sup T < T
47 9 46 sselid x k sup T <
48 znq sup T < k sup T < k
49 47 48 sylancom x k sup T < k
50 eqid k sup T < k = k sup T < k
51 49 50 fmptd x k sup T < k :
52 4 3 elmap k sup T < k k sup T < k :
53 51 52 sylibr x k sup T < k
54 7 53 eqeltrd x F x