Metamath Proof Explorer


Theorem rpnnen1lem2

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
Assertion rpnnen1lem2 x k sup T <

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 1 ssrab3 T
4 nnre k k
5 remulcl k x k x
6 5 ancoms x k k x
7 4 6 sylan2 x k k x
8 btwnz k x n n < k x n k x < n
9 8 simpld k x n n < k x
10 7 9 syl x k n n < k x
11 zre n n
12 11 adantl x k n n
13 simpll x k n x
14 nngt0 k 0 < k
15 4 14 jca k k 0 < k
16 15 ad2antlr x k n k 0 < k
17 ltdivmul n x k 0 < k n k < x n < k x
18 12 13 16 17 syl3anc x k n n k < x n < k x
19 18 rexbidva x k n n k < x n n < k x
20 10 19 mpbird x k n n k < x
21 rabn0 n | n k < x n n k < x
22 20 21 sylibr x k n | n k < x
23 1 neeq1i T n | n k < x
24 22 23 sylibr x k T
25 1 rabeq2i n T n n k < x
26 4 ad2antlr x k n k
27 26 13 5 syl2anc x k n k x
28 ltle n k x n < k x n k x
29 12 27 28 syl2anc x k n n < k x n k x
30 18 29 sylbid x k n n k < x n k x
31 30 impr x k n n k < x n k x
32 25 31 sylan2b x k n T n k x
33 32 ralrimiva x k n T n k x
34 brralrspcev k x n T n k x y n T n y
35 7 33 34 syl2anc x k y n T n y
36 suprzcl T T y n T n y sup T < T
37 3 24 35 36 mp3an2i x k sup T < T
38 3 37 sselid x k sup T <