Metamath Proof Explorer


Theorem rpnnen1lem3

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem3 x n ran F x n x

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 3 mptex k sup T < k V
6 2 fvmpt2 x k sup T < k V F x = k sup T < k
7 5 6 mpan2 x F x = k sup T < k
8 7 fveq1d x F x k = k sup T < k k
9 ovex sup T < k V
10 eqid k sup T < k = k sup T < k
11 10 fvmpt2 k sup T < k V k sup T < k k = sup T < k
12 9 11 mpan2 k k sup T < k k = sup T < k
13 8 12 sylan9eq x k F x k = sup T < k
14 1 rabeq2i n T n n k < x
15 zre n n
16 15 adantl x k n n
17 simpll x k n x
18 nnre k k
19 nngt0 k 0 < k
20 18 19 jca k k 0 < k
21 20 ad2antlr x k n k 0 < k
22 ltdivmul n x k 0 < k n k < x n < k x
23 16 17 21 22 syl3anc x k n n k < x n < k x
24 18 ad2antlr x k n k
25 remulcl k x k x
26 24 17 25 syl2anc x k n k x
27 ltle n k x n < k x n k x
28 16 26 27 syl2anc x k n n < k x n k x
29 23 28 sylbid x k n n k < x n k x
30 29 impr x k n n k < x n k x
31 14 30 sylan2b x k n T n k x
32 31 ralrimiva x k n T n k x
33 ssrab2 n | n k < x
34 1 33 eqsstri T
35 zssre
36 34 35 sstri T
37 36 a1i x k T
38 25 ancoms x k k x
39 18 38 sylan2 x k k x
40 btwnz k x n n < k x n k x < n
41 40 simpld k x n n < k x
42 39 41 syl x k n n < k x
43 23 rexbidva x k n n k < x n n < k x
44 42 43 mpbird x k n n k < x
45 rabn0 n | n k < x n n k < x
46 44 45 sylibr x k n | n k < x
47 1 neeq1i T n | n k < x
48 46 47 sylibr x k T
49 breq2 y = k x n y n k x
50 49 ralbidv y = k x n T n y n T n k x
51 50 rspcev k x n T n k x y n T n y
52 39 32 51 syl2anc x k y n T n y
53 suprleub T T y n T n y k x sup T < k x n T n k x
54 37 48 52 39 53 syl31anc x k sup T < k x n T n k x
55 32 54 mpbird x k sup T < k x
56 1 2 rpnnen1lem2 x k sup T <
57 56 zred x k sup T <
58 simpl x k x
59 20 adantl x k k 0 < k
60 ledivmul sup T < x k 0 < k sup T < k x sup T < k x
61 57 58 59 60 syl3anc x k sup T < k x sup T < k x
62 55 61 mpbird x k sup T < k x
63 13 62 eqbrtrd x k F x k x
64 63 ralrimiva x k F x k x
65 1 2 3 4 rpnnen1lem1 x F x
66 4 3 elmap F x F x :
67 65 66 sylib x F x :
68 ffn F x : F x Fn
69 breq1 n = F x k n x F x k x
70 69 ralrn F x Fn n ran F x n x k F x k x
71 67 68 70 3syl x n ran F x n x k F x k x
72 64 71 mpbird x n ran F x n x