Metamath Proof Explorer


Theorem rpnnen1lem4

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem4 x sup ran F x <

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 1 2 3 4 rpnnen1lem1 x F x
6 4 3 elmap F x F x :
7 5 6 sylib x F x :
8 frn F x : ran F x
9 qssre
10 8 9 sstrdi F x : ran F x
11 7 10 syl x ran F x
12 1nn 1
13 12 ne0ii
14 fdm F x : dom F x =
15 14 neeq1d F x : dom F x
16 13 15 mpbiri F x : dom F x
17 dm0rn0 dom F x = ran F x =
18 17 necon3bii dom F x ran F x
19 16 18 sylib F x : ran F x
20 7 19 syl x ran F x
21 1 2 3 4 rpnnen1lem3 x n ran F x n x
22 breq2 y = x n y n x
23 22 ralbidv y = x n ran F x n y n ran F x n x
24 23 rspcev x n ran F x n x y n ran F x n y
25 21 24 mpdan x y n ran F x n y
26 suprcl ran F x ran F x y n ran F x n y sup ran F x <
27 11 20 25 26 syl3anc x sup ran F x <