Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen1lem.1 |
|
2 |
|
rpnnen1lem.2 |
|
3 |
|
rpnnen1lem.n |
|
4 |
|
rpnnen1lem.q |
|
5 |
1 2 3 4
|
rpnnen1lem3 |
|
6 |
1 2 3 4
|
rpnnen1lem1 |
|
7 |
4 3
|
elmap |
|
8 |
6 7
|
sylib |
|
9 |
|
frn |
|
10 |
|
qssre |
|
11 |
9 10
|
sstrdi |
|
12 |
8 11
|
syl |
|
13 |
|
1nn |
|
14 |
13
|
ne0ii |
|
15 |
|
fdm |
|
16 |
15
|
neeq1d |
|
17 |
14 16
|
mpbiri |
|
18 |
|
dm0rn0 |
|
19 |
18
|
necon3bii |
|
20 |
17 19
|
sylib |
|
21 |
8 20
|
syl |
|
22 |
|
breq2 |
|
23 |
22
|
ralbidv |
|
24 |
23
|
rspcev |
|
25 |
5 24
|
mpdan |
|
26 |
|
id |
|
27 |
|
suprleub |
|
28 |
12 21 25 26 27
|
syl31anc |
|
29 |
5 28
|
mpbird |
|
30 |
1 2 3 4
|
rpnnen1lem4 |
|
31 |
|
resubcl |
|
32 |
30 31
|
mpdan |
|
33 |
32
|
adantr |
|
34 |
|
posdif |
|
35 |
30 34
|
mpancom |
|
36 |
35
|
biimpa |
|
37 |
36
|
gt0ne0d |
|
38 |
33 37
|
rereccld |
|
39 |
|
arch |
|
40 |
38 39
|
syl |
|
41 |
40
|
ex |
|
42 |
1 2
|
rpnnen1lem2 |
|
43 |
42
|
zred |
|
44 |
43
|
3adant3 |
|
45 |
44
|
ltp1d |
|
46 |
33 36
|
jca |
|
47 |
|
nnre |
|
48 |
|
nngt0 |
|
49 |
47 48
|
jca |
|
50 |
|
ltrec1 |
|
51 |
46 49 50
|
syl2an |
|
52 |
30
|
ad2antrr |
|
53 |
|
nnrecre |
|
54 |
53
|
adantl |
|
55 |
|
simpll |
|
56 |
52 54 55
|
ltaddsub2d |
|
57 |
12
|
adantr |
|
58 |
|
ffn |
|
59 |
8 58
|
syl |
|
60 |
|
fnfvelrn |
|
61 |
59 60
|
sylan |
|
62 |
57 61
|
sseldd |
|
63 |
30
|
adantr |
|
64 |
53
|
adantl |
|
65 |
12 21 25
|
3jca |
|
66 |
65
|
adantr |
|
67 |
|
suprub |
|
68 |
66 61 67
|
syl2anc |
|
69 |
62 63 64 68
|
leadd1dd |
|
70 |
62 64
|
readdcld |
|
71 |
|
readdcl |
|
72 |
30 53 71
|
syl2an |
|
73 |
|
simpl |
|
74 |
|
lelttr |
|
75 |
74
|
expd |
|
76 |
70 72 73 75
|
syl3anc |
|
77 |
69 76
|
mpd |
|
78 |
77
|
adantlr |
|
79 |
56 78
|
sylbird |
|
80 |
51 79
|
sylbid |
|
81 |
42
|
peano2zd |
|
82 |
|
oveq1 |
|
83 |
82
|
breq1d |
|
84 |
83 1
|
elrab2 |
|
85 |
84
|
biimpri |
|
86 |
81 85
|
sylan |
|
87 |
|
ssrab2 |
|
88 |
1 87
|
eqsstri |
|
89 |
|
zssre |
|
90 |
88 89
|
sstri |
|
91 |
90
|
a1i |
|
92 |
|
remulcl |
|
93 |
92
|
ancoms |
|
94 |
47 93
|
sylan2 |
|
95 |
|
btwnz |
|
96 |
95
|
simpld |
|
97 |
94 96
|
syl |
|
98 |
|
zre |
|
99 |
98
|
adantl |
|
100 |
|
simpll |
|
101 |
49
|
ad2antlr |
|
102 |
|
ltdivmul |
|
103 |
99 100 101 102
|
syl3anc |
|
104 |
103
|
rexbidva |
|
105 |
97 104
|
mpbird |
|
106 |
|
rabn0 |
|
107 |
105 106
|
sylibr |
|
108 |
1
|
neeq1i |
|
109 |
107 108
|
sylibr |
|
110 |
1
|
rabeq2i |
|
111 |
47
|
ad2antlr |
|
112 |
111 100 92
|
syl2anc |
|
113 |
|
ltle |
|
114 |
99 112 113
|
syl2anc |
|
115 |
103 114
|
sylbid |
|
116 |
115
|
impr |
|
117 |
110 116
|
sylan2b |
|
118 |
117
|
ralrimiva |
|
119 |
|
breq2 |
|
120 |
119
|
ralbidv |
|
121 |
120
|
rspcev |
|
122 |
94 118 121
|
syl2anc |
|
123 |
91 109 122
|
3jca |
|
124 |
|
suprub |
|
125 |
123 124
|
sylan |
|
126 |
86 125
|
syldan |
|
127 |
126
|
ex |
|
128 |
42
|
zcnd |
|
129 |
|
1cnd |
|
130 |
|
nncn |
|
131 |
|
nnne0 |
|
132 |
130 131
|
jca |
|
133 |
132
|
adantl |
|
134 |
|
divdir |
|
135 |
128 129 133 134
|
syl3anc |
|
136 |
3
|
mptex |
|
137 |
2
|
fvmpt2 |
|
138 |
136 137
|
mpan2 |
|
139 |
138
|
fveq1d |
|
140 |
|
ovex |
|
141 |
|
eqid |
|
142 |
141
|
fvmpt2 |
|
143 |
140 142
|
mpan2 |
|
144 |
139 143
|
sylan9eq |
|
145 |
144
|
oveq1d |
|
146 |
135 145
|
eqtr4d |
|
147 |
146
|
breq1d |
|
148 |
81
|
zred |
|
149 |
148 43
|
lenltd |
|
150 |
127 147 149
|
3imtr3d |
|
151 |
150
|
adantlr |
|
152 |
80 151
|
syld |
|
153 |
152
|
exp31 |
|
154 |
153
|
com4l |
|
155 |
154
|
com14 |
|
156 |
155
|
3imp |
|
157 |
45 156
|
mt2d |
|
158 |
157
|
rexlimdv3a |
|
159 |
41 158
|
syld |
|
160 |
159
|
pm2.01d |
|
161 |
|
eqlelt |
|
162 |
30 161
|
mpancom |
|
163 |
29 160 162
|
mpbir2and |
|