Metamath Proof Explorer


Theorem rpnnen1lem5

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem5 x sup ran F x < = x

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 1 2 3 4 rpnnen1lem3 x n ran F x n x
6 1 2 3 4 rpnnen1lem1 x F x
7 4 3 elmap F x F x :
8 6 7 sylib x F x :
9 frn F x : ran F x
10 qssre
11 9 10 sstrdi F x : ran F x
12 8 11 syl x ran F x
13 1nn 1
14 13 ne0ii
15 fdm F x : dom F x =
16 15 neeq1d F x : dom F x
17 14 16 mpbiri F x : dom F x
18 dm0rn0 dom F x = ran F x =
19 18 necon3bii dom F x ran F x
20 17 19 sylib F x : ran F x
21 8 20 syl x ran F x
22 breq2 y = x n y n x
23 22 ralbidv y = x n ran F x n y n ran F x n x
24 23 rspcev x n ran F x n x y n ran F x n y
25 5 24 mpdan x y n ran F x n y
26 id x x
27 suprleub ran F x ran F x y n ran F x n y x sup ran F x < x n ran F x n x
28 12 21 25 26 27 syl31anc x sup ran F x < x n ran F x n x
29 5 28 mpbird x sup ran F x < x
30 1 2 3 4 rpnnen1lem4 x sup ran F x <
31 resubcl x sup ran F x < x sup ran F x <
32 30 31 mpdan x x sup ran F x <
33 32 adantr x sup ran F x < < x x sup ran F x <
34 posdif sup ran F x < x sup ran F x < < x 0 < x sup ran F x <
35 30 34 mpancom x sup ran F x < < x 0 < x sup ran F x <
36 35 biimpa x sup ran F x < < x 0 < x sup ran F x <
37 36 gt0ne0d x sup ran F x < < x x sup ran F x < 0
38 33 37 rereccld x sup ran F x < < x 1 x sup ran F x <
39 arch 1 x sup ran F x < k 1 x sup ran F x < < k
40 38 39 syl x sup ran F x < < x k 1 x sup ran F x < < k
41 40 ex x sup ran F x < < x k 1 x sup ran F x < < k
42 1 2 rpnnen1lem2 x k sup T <
43 42 zred x k sup T <
44 43 3adant3 x k 1 x sup ran F x < < k sup T <
45 44 ltp1d x k 1 x sup ran F x < < k sup T < < sup T < + 1
46 33 36 jca x sup ran F x < < x x sup ran F x < 0 < x sup ran F x <
47 nnre k k
48 nngt0 k 0 < k
49 47 48 jca k k 0 < k
50 ltrec1 x sup ran F x < 0 < x sup ran F x < k 0 < k 1 x sup ran F x < < k 1 k < x sup ran F x <
51 46 49 50 syl2an x sup ran F x < < x k 1 x sup ran F x < < k 1 k < x sup ran F x <
52 30 ad2antrr x sup ran F x < < x k sup ran F x <
53 nnrecre k 1 k
54 53 adantl x sup ran F x < < x k 1 k
55 simpll x sup ran F x < < x k x
56 52 54 55 ltaddsub2d x sup ran F x < < x k sup ran F x < + 1 k < x 1 k < x sup ran F x <
57 12 adantr x k ran F x
58 ffn F x : F x Fn
59 8 58 syl x F x Fn
60 fnfvelrn F x Fn k F x k ran F x
61 59 60 sylan x k F x k ran F x
62 57 61 sseldd x k F x k
63 30 adantr x k sup ran F x <
64 53 adantl x k 1 k
65 12 21 25 3jca x ran F x ran F x y n ran F x n y
66 65 adantr x k ran F x ran F x y n ran F x n y
67 suprub ran F x ran F x y n ran F x n y F x k ran F x F x k sup ran F x <
68 66 61 67 syl2anc x k F x k sup ran F x <
69 62 63 64 68 leadd1dd x k F x k + 1 k sup ran F x < + 1 k
70 62 64 readdcld x k F x k + 1 k
71 readdcl sup ran F x < 1 k sup ran F x < + 1 k
72 30 53 71 syl2an x k sup ran F x < + 1 k
73 simpl x k x
74 lelttr F x k + 1 k sup ran F x < + 1 k x F x k + 1 k sup ran F x < + 1 k sup ran F x < + 1 k < x F x k + 1 k < x
75 74 expd F x k + 1 k sup ran F x < + 1 k x F x k + 1 k sup ran F x < + 1 k sup ran F x < + 1 k < x F x k + 1 k < x
76 70 72 73 75 syl3anc x k F x k + 1 k sup ran F x < + 1 k sup ran F x < + 1 k < x F x k + 1 k < x
77 69 76 mpd x k sup ran F x < + 1 k < x F x k + 1 k < x
78 77 adantlr x sup ran F x < < x k sup ran F x < + 1 k < x F x k + 1 k < x
79 56 78 sylbird x sup ran F x < < x k 1 k < x sup ran F x < F x k + 1 k < x
80 51 79 sylbid x sup ran F x < < x k 1 x sup ran F x < < k F x k + 1 k < x
81 42 peano2zd x k sup T < + 1
82 oveq1 n = sup T < + 1 n k = sup T < + 1 k
83 82 breq1d n = sup T < + 1 n k < x sup T < + 1 k < x
84 83 1 elrab2 sup T < + 1 T sup T < + 1 sup T < + 1 k < x
85 84 biimpri sup T < + 1 sup T < + 1 k < x sup T < + 1 T
86 81 85 sylan x k sup T < + 1 k < x sup T < + 1 T
87 ssrab2 n | n k < x
88 1 87 eqsstri T
89 zssre
90 88 89 sstri T
91 90 a1i x k T
92 remulcl k x k x
93 92 ancoms x k k x
94 47 93 sylan2 x k k x
95 btwnz k x n n < k x n k x < n
96 95 simpld k x n n < k x
97 94 96 syl x k n n < k x
98 zre n n
99 98 adantl x k n n
100 simpll x k n x
101 49 ad2antlr x k n k 0 < k
102 ltdivmul n x k 0 < k n k < x n < k x
103 99 100 101 102 syl3anc x k n n k < x n < k x
104 103 rexbidva x k n n k < x n n < k x
105 97 104 mpbird x k n n k < x
106 rabn0 n | n k < x n n k < x
107 105 106 sylibr x k n | n k < x
108 1 neeq1i T n | n k < x
109 107 108 sylibr x k T
110 1 rabeq2i n T n n k < x
111 47 ad2antlr x k n k
112 111 100 92 syl2anc x k n k x
113 ltle n k x n < k x n k x
114 99 112 113 syl2anc x k n n < k x n k x
115 103 114 sylbid x k n n k < x n k x
116 115 impr x k n n k < x n k x
117 110 116 sylan2b x k n T n k x
118 117 ralrimiva x k n T n k x
119 breq2 y = k x n y n k x
120 119 ralbidv y = k x n T n y n T n k x
121 120 rspcev k x n T n k x y n T n y
122 94 118 121 syl2anc x k y n T n y
123 91 109 122 3jca x k T T y n T n y
124 suprub T T y n T n y sup T < + 1 T sup T < + 1 sup T <
125 123 124 sylan x k sup T < + 1 T sup T < + 1 sup T <
126 86 125 syldan x k sup T < + 1 k < x sup T < + 1 sup T <
127 126 ex x k sup T < + 1 k < x sup T < + 1 sup T <
128 42 zcnd x k sup T <
129 1cnd x k 1
130 nncn k k
131 nnne0 k k 0
132 130 131 jca k k k 0
133 132 adantl x k k k 0
134 divdir sup T < 1 k k 0 sup T < + 1 k = sup T < k + 1 k
135 128 129 133 134 syl3anc x k sup T < + 1 k = sup T < k + 1 k
136 3 mptex k sup T < k V
137 2 fvmpt2 x k sup T < k V F x = k sup T < k
138 136 137 mpan2 x F x = k sup T < k
139 138 fveq1d x F x k = k sup T < k k
140 ovex sup T < k V
141 eqid k sup T < k = k sup T < k
142 141 fvmpt2 k sup T < k V k sup T < k k = sup T < k
143 140 142 mpan2 k k sup T < k k = sup T < k
144 139 143 sylan9eq x k F x k = sup T < k
145 144 oveq1d x k F x k + 1 k = sup T < k + 1 k
146 135 145 eqtr4d x k sup T < + 1 k = F x k + 1 k
147 146 breq1d x k sup T < + 1 k < x F x k + 1 k < x
148 81 zred x k sup T < + 1
149 148 43 lenltd x k sup T < + 1 sup T < ¬ sup T < < sup T < + 1
150 127 147 149 3imtr3d x k F x k + 1 k < x ¬ sup T < < sup T < + 1
151 150 adantlr x sup ran F x < < x k F x k + 1 k < x ¬ sup T < < sup T < + 1
152 80 151 syld x sup ran F x < < x k 1 x sup ran F x < < k ¬ sup T < < sup T < + 1
153 152 exp31 x sup ran F x < < x k 1 x sup ran F x < < k ¬ sup T < < sup T < + 1
154 153 com4l sup ran F x < < x k 1 x sup ran F x < < k x ¬ sup T < < sup T < + 1
155 154 com14 x k 1 x sup ran F x < < k sup ran F x < < x ¬ sup T < < sup T < + 1
156 155 3imp x k 1 x sup ran F x < < k sup ran F x < < x ¬ sup T < < sup T < + 1
157 45 156 mt2d x k 1 x sup ran F x < < k ¬ sup ran F x < < x
158 157 rexlimdv3a x k 1 x sup ran F x < < k ¬ sup ran F x < < x
159 41 158 syld x sup ran F x < < x ¬ sup ran F x < < x
160 159 pm2.01d x ¬ sup ran F x < < x
161 eqlelt sup ran F x < x sup ran F x < = x sup ran F x < x ¬ sup ran F x < < x
162 30 161 mpancom x sup ran F x < = x sup ran F x < x ¬ sup ran F x < < x
163 29 160 162 mpbir2and x sup ran F x < = x