Metamath Proof Explorer


Theorem rpnnen1lem6

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 15-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T = n | n k < x
rpnnen1lem.2 F = x k sup T < k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem6

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T = n | n k < x
2 rpnnen1lem.2 F = x k sup T < k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 ovex V
6 1 2 3 4 rpnnen1lem1 x F x
7 rneq F x = F y ran F x = ran F y
8 7 supeq1d F x = F y sup ran F x < = sup ran F y <
9 1 2 3 4 rpnnen1lem5 x sup ran F x < = x
10 fveq2 x = y F x = F y
11 10 rneqd x = y ran F x = ran F y
12 11 supeq1d x = y sup ran F x < = sup ran F y <
13 id x = y x = y
14 12 13 eqeq12d x = y sup ran F x < = x sup ran F y < = y
15 14 9 vtoclga y sup ran F y < = y
16 9 15 eqeqan12d x y sup ran F x < = sup ran F y < x = y
17 8 16 syl5ib x y F x = F y x = y
18 17 10 impbid1 x y F x = F y x = y
19 6 18 dom2 V
20 5 19 ax-mp