Database
REAL AND COMPLEX NUMBERS
Cardinality of real and complex number subsets
The reals are uncountable
rpnnen2lem1
Next ⟩
rpnnen2lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
rpnnen2lem1
Description:
Lemma for
rpnnen2
.
(Contributed by
Mario Carneiro
, 13-May-2013)
Ref
Expression
Hypothesis
rpnnen2.1
⊢
F
=
x
∈
𝒫
ℕ
⟼
n
∈
ℕ
⟼
if
n
∈
x
1
3
n
0
Assertion
rpnnen2lem1
⊢
A
⊆
ℕ
∧
N
∈
ℕ
→
F
⁡
A
⁡
N
=
if
N
∈
A
1
3
N
0
Proof
Step
Hyp
Ref
Expression
1
rpnnen2.1
⊢
F
=
x
∈
𝒫
ℕ
⟼
n
∈
ℕ
⟼
if
n
∈
x
1
3
n
0
2
nnex
⊢
ℕ
∈
V
3
2
elpw2
⊢
A
∈
𝒫
ℕ
↔
A
⊆
ℕ
4
eleq2
⊢
x
=
A
→
n
∈
x
↔
n
∈
A
5
4
ifbid
⊢
x
=
A
→
if
n
∈
x
1
3
n
0
=
if
n
∈
A
1
3
n
0
6
5
mpteq2dv
⊢
x
=
A
→
n
∈
ℕ
⟼
if
n
∈
x
1
3
n
0
=
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
7
2
mptex
⊢
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
∈
V
8
6
1
7
fvmpt
⊢
A
∈
𝒫
ℕ
→
F
⁡
A
=
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
9
3
8
sylbir
⊢
A
⊆
ℕ
→
F
⁡
A
=
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
10
9
fveq1d
⊢
A
⊆
ℕ
→
F
⁡
A
⁡
N
=
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
⁡
N
11
eleq1
⊢
n
=
N
→
n
∈
A
↔
N
∈
A
12
oveq2
⊢
n
=
N
→
1
3
n
=
1
3
N
13
11
12
ifbieq1d
⊢
n
=
N
→
if
n
∈
A
1
3
n
0
=
if
N
∈
A
1
3
N
0
14
eqid
⊢
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
=
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
15
ovex
⊢
1
3
N
∈
V
16
c0ex
⊢
0
∈
V
17
15
16
ifex
⊢
if
N
∈
A
1
3
N
0
∈
V
18
13
14
17
fvmpt
⊢
N
∈
ℕ
→
n
∈
ℕ
⟼
if
n
∈
A
1
3
n
0
⁡
N
=
if
N
∈
A
1
3
N
0
19
10
18
sylan9eq
⊢
A
⊆
ℕ
∧
N
∈
ℕ
→
F
⁡
A
⁡
N
=
if
N
∈
A
1
3
N
0