Metamath Proof Explorer


Theorem rpnnen2lem1

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem1 A N F A N = if N A 1 3 N 0

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 nnex V
3 2 elpw2 A 𝒫 A
4 eleq2 x = A n x n A
5 4 ifbid x = A if n x 1 3 n 0 = if n A 1 3 n 0
6 5 mpteq2dv x = A n if n x 1 3 n 0 = n if n A 1 3 n 0
7 2 mptex n if n A 1 3 n 0 V
8 6 1 7 fvmpt A 𝒫 F A = n if n A 1 3 n 0
9 3 8 sylbir A F A = n if n A 1 3 n 0
10 9 fveq1d A F A N = n if n A 1 3 n 0 N
11 eleq1 n = N n A N A
12 oveq2 n = N 1 3 n = 1 3 N
13 11 12 ifbieq1d n = N if n A 1 3 n 0 = if N A 1 3 N 0
14 eqid n if n A 1 3 n 0 = n if n A 1 3 n 0
15 ovex 1 3 N V
16 c0ex 0 V
17 15 16 ifex if N A 1 3 N 0 V
18 13 14 17 fvmpt N n if n A 1 3 n 0 N = if N A 1 3 N 0
19 10 18 sylan9eq A N F A N = if N A 1 3 N 0