Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|
2 |
|
rpnnen2.2 |
|
3 |
|
rpnnen2.3 |
|
4 |
|
rpnnen2.4 |
|
5 |
|
rpnnen2.5 |
|
6 |
|
rpnnen2.6 |
|
7 |
|
simpr |
|
8 |
7 6
|
sylib |
|
9 |
|
eldifi |
|
10 |
|
ssel2 |
|
11 |
9 10
|
sylan2 |
|
12 |
2 4 11
|
syl2anc |
|
13 |
1
|
rpnnen2lem8 |
|
14 |
2 12 13
|
syl2anc |
|
15 |
|
1z |
|
16 |
|
nnz |
|
17 |
|
elfzm11 |
|
18 |
15 16 17
|
sylancr |
|
19 |
18
|
biimpa |
|
20 |
12 19
|
sylan |
|
21 |
20
|
simp3d |
|
22 |
|
elfznn |
|
23 |
|
breq1 |
|
24 |
|
eleq1w |
|
25 |
|
eleq1w |
|
26 |
24 25
|
bibi12d |
|
27 |
23 26
|
imbi12d |
|
28 |
27
|
rspccva |
|
29 |
5 22 28
|
syl2an |
|
30 |
21 29
|
mpd |
|
31 |
30
|
ifbid |
|
32 |
1
|
rpnnen2lem1 |
|
33 |
2 22 32
|
syl2an |
|
34 |
1
|
rpnnen2lem1 |
|
35 |
3 22 34
|
syl2an |
|
36 |
31 33 35
|
3eqtr4d |
|
37 |
36
|
sumeq2dv |
|
38 |
37
|
oveq1d |
|
39 |
14 38
|
eqtrd |
|
40 |
39
|
adantr |
|
41 |
1
|
rpnnen2lem8 |
|
42 |
3 12 41
|
syl2anc |
|
43 |
42
|
adantr |
|
44 |
8 40 43
|
3eqtr3d |
|
45 |
1
|
rpnnen2lem6 |
|
46 |
2 12 45
|
syl2anc |
|
47 |
1
|
rpnnen2lem6 |
|
48 |
3 12 47
|
syl2anc |
|
49 |
|
fzfid |
|
50 |
1
|
rpnnen2lem2 |
|
51 |
3 50
|
syl |
|
52 |
|
ffvelrn |
|
53 |
51 22 52
|
syl2an |
|
54 |
49 53
|
fsumrecl |
|
55 |
|
readdcan |
|
56 |
46 48 54 55
|
syl3anc |
|
57 |
56
|
adantr |
|
58 |
44 57
|
mpbid |
|