Metamath Proof Explorer


Theorem rpnnen2lem11

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypotheses rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
rpnnen2.2 φ A
rpnnen2.3 φ B
rpnnen2.4 φ m A B
rpnnen2.5 φ n n < m n A n B
rpnnen2.6 ψ k F A k = k F B k
Assertion rpnnen2lem11 φ ¬ ψ

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 rpnnen2.2 φ A
3 rpnnen2.3 φ B
4 rpnnen2.4 φ m A B
5 rpnnen2.5 φ n n < m n A n B
6 rpnnen2.6 ψ k F A k = k F B k
7 eldifi m A B m A
8 ssel2 A m A m
9 7 8 sylan2 A m A B m
10 2 4 9 syl2anc φ m
11 1 rpnnen2lem6 B m k m F B k
12 3 10 11 syl2anc φ k m F B k
13 3nn 3
14 nnrecre 3 1 3
15 13 14 ax-mp 1 3
16 10 nnnn0d φ m 0
17 reexpcl 1 3 m 0 1 3 m
18 15 16 17 sylancr φ 1 3 m
19 1 rpnnen2lem6 A m k m F A k
20 2 10 19 syl2anc φ k m F A k
21 nnrp 3 3 +
22 rpreccl 3 + 1 3 +
23 13 21 22 mp2b 1 3 +
24 10 nnzd φ m
25 rpexpcl 1 3 + m 1 3 m +
26 23 24 25 sylancr φ 1 3 m +
27 26 rpred φ 1 3 m
28 27 rehalfcld φ 1 3 m 2
29 4 snssd φ m A B
30 2 ssdifd φ A B B
31 29 30 sstrd φ m B
32 10 snssd φ m
33 ssconb B m B m m B
34 3 32 33 syl2anc φ B m m B
35 31 34 mpbird φ B m
36 difssd φ m
37 1 rpnnen2lem7 B m m m k m F B k k m F m k
38 35 36 10 37 syl3anc φ k m F B k k m F m k
39 1 rpnnen2lem9 m k m F m k = 0 + 1 3 m + 1 1 1 3
40 10 39 syl φ k m F m k = 0 + 1 3 m + 1 1 1 3
41 15 recni 1 3
42 expp1 1 3 m 0 1 3 m + 1 = 1 3 m 1 3
43 41 16 42 sylancr φ 1 3 m + 1 = 1 3 m 1 3
44 27 recnd φ 1 3 m
45 3cn 3
46 3ne0 3 0
47 divrec 1 3 m 3 3 0 1 3 m 3 = 1 3 m 1 3
48 45 46 47 mp3an23 1 3 m 1 3 m 3 = 1 3 m 1 3
49 44 48 syl φ 1 3 m 3 = 1 3 m 1 3
50 43 49 eqtr4d φ 1 3 m + 1 = 1 3 m 3
51 50 oveq1d φ 1 3 m + 1 1 1 3 = 1 3 m 3 1 1 3
52 ax-1cn 1
53 45 46 pm3.2i 3 3 0
54 divsubdir 3 1 3 3 0 3 1 3 = 3 3 1 3
55 45 52 53 54 mp3an 3 1 3 = 3 3 1 3
56 3m1e2 3 1 = 2
57 56 oveq1i 3 1 3 = 2 3
58 45 46 dividi 3 3 = 1
59 58 oveq1i 3 3 1 3 = 1 1 3
60 55 57 59 3eqtr3ri 1 1 3 = 2 3
61 60 oveq2i 1 3 m 3 1 1 3 = 1 3 m 3 2 3
62 2cnne0 2 2 0
63 divcan7 1 3 m 2 2 0 3 3 0 1 3 m 3 2 3 = 1 3 m 2
64 62 53 63 mp3an23 1 3 m 1 3 m 3 2 3 = 1 3 m 2
65 44 64 syl φ 1 3 m 3 2 3 = 1 3 m 2
66 61 65 eqtrid φ 1 3 m 3 1 1 3 = 1 3 m 2
67 51 66 eqtrd φ 1 3 m + 1 1 1 3 = 1 3 m 2
68 67 oveq2d φ 0 + 1 3 m + 1 1 1 3 = 0 + 1 3 m 2
69 28 recnd φ 1 3 m 2
70 69 addid2d φ 0 + 1 3 m 2 = 1 3 m 2
71 40 68 70 3eqtrd φ k m F m k = 1 3 m 2
72 38 71 breqtrd φ k m F B k 1 3 m 2
73 rphalflt 1 3 m + 1 3 m 2 < 1 3 m
74 26 73 syl φ 1 3 m 2 < 1 3 m
75 12 28 27 72 74 lelttrd φ k m F B k < 1 3 m
76 eluznn m k m k
77 10 76 sylan φ k m k
78 1 rpnnen2lem1 m k F m k = if k m 1 3 k 0
79 32 77 78 syl2an2r φ k m F m k = if k m 1 3 k 0
80 79 sumeq2dv φ k m F m k = k m if k m 1 3 k 0
81 uzid m m m
82 24 81 syl φ m m
83 82 snssd φ m m
84 vex m V
85 oveq2 k = m 1 3 k = 1 3 m
86 85 eleq1d k = m 1 3 k 1 3 m
87 84 86 ralsn k m 1 3 k 1 3 m
88 44 87 sylibr φ k m 1 3 k
89 ssidd φ m m
90 89 orcd φ m m m Fin
91 sumss2 m m k m 1 3 k m m m Fin k m 1 3 k = k m if k m 1 3 k 0
92 83 88 90 91 syl21anc φ k m 1 3 k = k m if k m 1 3 k 0
93 85 sumsn m 1 3 m k m 1 3 k = 1 3 m
94 10 44 93 syl2anc φ k m 1 3 k = 1 3 m
95 80 92 94 3eqtr2d φ k m F m k = 1 3 m
96 4 7 syl φ m A
97 96 snssd φ m A
98 1 rpnnen2lem7 m A A m k m F m k k m F A k
99 97 2 10 98 syl3anc φ k m F m k k m F A k
100 95 99 eqbrtrrd φ 1 3 m k m F A k
101 12 18 20 75 100 ltletrd φ k m F B k < k m F A k
102 12 101 gtned φ k m F A k k m F B k
103 1 2 3 4 5 6 rpnnen2lem10 φ ψ k m F A k = k m F B k
104 103 ex φ ψ k m F A k = k m F B k
105 104 necon3ad φ k m F A k k m F B k ¬ ψ
106 102 105 mpd φ ¬ ψ