Metamath Proof Explorer


Theorem rpnnen2lem2

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem2 A F A :

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 nnex V
3 2 elpw2 A 𝒫 A
4 eleq2 x = A n x n A
5 4 ifbid x = A if n x 1 3 n 0 = if n A 1 3 n 0
6 5 mpteq2dv x = A n if n x 1 3 n 0 = n if n A 1 3 n 0
7 2 mptex n if n A 1 3 n 0 V
8 6 1 7 fvmpt A 𝒫 F A = n if n A 1 3 n 0
9 3 8 sylbir A F A = n if n A 1 3 n 0
10 1re 1
11 3nn 3
12 nndivre 1 3 1 3
13 10 11 12 mp2an 1 3
14 nnnn0 n n 0
15 reexpcl 1 3 n 0 1 3 n
16 13 14 15 sylancr n 1 3 n
17 0re 0
18 ifcl 1 3 n 0 if n A 1 3 n 0
19 16 17 18 sylancl n if n A 1 3 n 0
20 19 adantl A n if n A 1 3 n 0
21 9 20 fmpt3d A F A :