| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpnnen2.1 |  | 
						
							| 2 |  | 1re |  | 
						
							| 3 |  | 3nn |  | 
						
							| 4 |  | nndivre |  | 
						
							| 5 | 2 3 4 | mp2an |  | 
						
							| 6 | 5 | recni |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | 0re |  | 
						
							| 9 |  | 3re |  | 
						
							| 10 |  | 3pos |  | 
						
							| 11 | 9 10 | recgt0ii |  | 
						
							| 12 | 8 5 11 | ltleii |  | 
						
							| 13 |  | absid |  | 
						
							| 14 | 5 12 13 | mp2an |  | 
						
							| 15 |  | 1lt3 |  | 
						
							| 16 |  | recgt1 |  | 
						
							| 17 | 9 10 16 | mp2an |  | 
						
							| 18 | 15 17 | mpbi |  | 
						
							| 19 | 14 18 | eqbrtri |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 |  | 1nn0 |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 |  | ssid |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 |  | nnuz |  | 
						
							| 26 | 24 25 | eleqtrrdi |  | 
						
							| 27 | 1 | rpnnen2lem1 |  | 
						
							| 28 | 23 26 27 | sylancr |  | 
						
							| 29 | 26 | iftrued |  | 
						
							| 30 | 28 29 | eqtrd |  | 
						
							| 31 | 7 20 22 30 | geolim2 |  | 
						
							| 32 | 31 | mptru |  | 
						
							| 33 |  | exp1 |  | 
						
							| 34 | 6 33 | ax-mp |  | 
						
							| 35 |  | 3cn |  | 
						
							| 36 |  | ax-1cn |  | 
						
							| 37 |  | 3ne0 |  | 
						
							| 38 | 35 37 | pm3.2i |  | 
						
							| 39 |  | divsubdir |  | 
						
							| 40 | 35 36 38 39 | mp3an |  | 
						
							| 41 |  | 3m1e2 |  | 
						
							| 42 | 41 | oveq1i |  | 
						
							| 43 | 35 37 | dividi |  | 
						
							| 44 | 43 | oveq1i |  | 
						
							| 45 | 40 42 44 | 3eqtr3ri |  | 
						
							| 46 | 34 45 | oveq12i |  | 
						
							| 47 |  | 2cnne0 |  | 
						
							| 48 |  | divcan7 |  | 
						
							| 49 | 36 47 38 48 | mp3an |  | 
						
							| 50 | 46 49 | eqtri |  | 
						
							| 51 | 32 50 | breqtri |  |