Metamath Proof Explorer


Theorem rpnnen2lem3

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem3 seq 1 + F 1 2

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 1re 1
3 3nn 3
4 nndivre 1 3 1 3
5 2 3 4 mp2an 1 3
6 5 recni 1 3
7 6 a1i 1 3
8 0re 0
9 3re 3
10 3pos 0 < 3
11 9 10 recgt0ii 0 < 1 3
12 8 5 11 ltleii 0 1 3
13 absid 1 3 0 1 3 1 3 = 1 3
14 5 12 13 mp2an 1 3 = 1 3
15 1lt3 1 < 3
16 recgt1 3 0 < 3 1 < 3 1 3 < 1
17 9 10 16 mp2an 1 < 3 1 3 < 1
18 15 17 mpbi 1 3 < 1
19 14 18 eqbrtri 1 3 < 1
20 19 a1i 1 3 < 1
21 1nn0 1 0
22 21 a1i 1 0
23 ssid
24 simpr k 1 k 1
25 nnuz = 1
26 24 25 eleqtrrdi k 1 k
27 1 rpnnen2lem1 k F k = if k 1 3 k 0
28 23 26 27 sylancr k 1 F k = if k 1 3 k 0
29 26 iftrued k 1 if k 1 3 k 0 = 1 3 k
30 28 29 eqtrd k 1 F k = 1 3 k
31 7 20 22 30 geolim2 seq 1 + F 1 3 1 1 1 3
32 31 mptru seq 1 + F 1 3 1 1 1 3
33 exp1 1 3 1 3 1 = 1 3
34 6 33 ax-mp 1 3 1 = 1 3
35 3cn 3
36 ax-1cn 1
37 3ne0 3 0
38 35 37 pm3.2i 3 3 0
39 divsubdir 3 1 3 3 0 3 1 3 = 3 3 1 3
40 35 36 38 39 mp3an 3 1 3 = 3 3 1 3
41 3m1e2 3 1 = 2
42 41 oveq1i 3 1 3 = 2 3
43 35 37 dividi 3 3 = 1
44 43 oveq1i 3 3 1 3 = 1 1 3
45 40 42 44 3eqtr3ri 1 1 3 = 2 3
46 34 45 oveq12i 1 3 1 1 1 3 = 1 3 2 3
47 2cnne0 2 2 0
48 divcan7 1 2 2 0 3 3 0 1 3 2 3 = 1 2
49 36 47 38 48 mp3an 1 3 2 3 = 1 2
50 46 49 eqtri 1 3 1 1 1 3 = 1 2
51 32 50 breqtri seq 1 + F 1 2