Metamath Proof Explorer


Theorem rpnnen2lem4

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem4 A B B k 0 F A k F A k F B k

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 nnnn0 k k 0
3 0re 0
4 1re 1
5 3nn 3
6 nndivre 1 3 1 3
7 4 5 6 mp2an 1 3
8 3re 3
9 3pos 0 < 3
10 8 9 recgt0ii 0 < 1 3
11 3 7 10 ltleii 0 1 3
12 expge0 1 3 k 0 0 1 3 0 1 3 k
13 7 12 mp3an1 k 0 0 1 3 0 1 3 k
14 2 11 13 sylancl k 0 1 3 k
15 14 3ad2ant3 A B B k 0 1 3 k
16 0le0 0 0
17 breq2 1 3 k = if k A 1 3 k 0 0 1 3 k 0 if k A 1 3 k 0
18 breq2 0 = if k A 1 3 k 0 0 0 0 if k A 1 3 k 0
19 17 18 ifboth 0 1 3 k 0 0 0 if k A 1 3 k 0
20 15 16 19 sylancl A B B k 0 if k A 1 3 k 0
21 sstr A B B A
22 1 rpnnen2lem1 A k F A k = if k A 1 3 k 0
23 21 22 stoic3 A B B k F A k = if k A 1 3 k 0
24 20 23 breqtrrd A B B k 0 F A k
25 reexpcl 1 3 k 0 1 3 k
26 7 2 25 sylancr k 1 3 k
27 26 3ad2ant3 A B B k 1 3 k
28 0red A B B k 0
29 simp1 A B B k A B
30 29 sseld A B B k k A k B
31 ifle 1 3 k 0 0 1 3 k k A k B if k A 1 3 k 0 if k B 1 3 k 0
32 27 28 15 30 31 syl31anc A B B k if k A 1 3 k 0 if k B 1 3 k 0
33 1 rpnnen2lem1 B k F B k = if k B 1 3 k 0
34 33 3adant1 A B B k F B k = if k B 1 3 k 0
35 32 23 34 3brtr4d A B B k F A k F B k
36 24 35 jca A B B k 0 F A k F A k F B k