Metamath Proof Explorer


Theorem rpnnen2lem5

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem5 A M seq M + F A dom

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 nnuz = 1
3 1nn 1
4 3 a1i A 1
5 ssid
6 1 rpnnen2lem2 F :
7 5 6 mp1i A F :
8 7 ffvelrnda A k F k
9 1 rpnnen2lem2 A F A :
10 9 ffvelrnda A k F A k
11 1 rpnnen2lem3 seq 1 + F 1 2
12 seqex seq 1 + F V
13 ovex 1 2 V
14 12 13 breldm seq 1 + F 1 2 seq 1 + F dom
15 11 14 mp1i A seq 1 + F dom
16 elnnuz k k 1
17 1 rpnnen2lem4 A k 0 F A k F A k F k
18 5 17 mp3an2 A k 0 F A k F A k F k
19 16 18 sylan2br A k 1 0 F A k F A k F k
20 19 simpld A k 1 0 F A k
21 19 simprd A k 1 F A k F k
22 2 4 8 10 15 20 21 cvgcmp A seq 1 + F A dom
23 22 adantr A M seq 1 + F A dom
24 simpr A M M
25 10 adantlr A M k F A k
26 25 recnd A M k F A k
27 2 24 26 iserex A M seq 1 + F A dom seq M + F A dom
28 23 27 mpbid A M seq M + F A dom