Metamath Proof Explorer


Theorem rpnnen2lem6

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem6 A M k M F A k

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 eqid M = M
3 nnz M M
4 3 adantl A M M
5 eqidd A M k M F A k = F A k
6 1 rpnnen2lem2 A F A :
7 6 ad2antrr A M k M F A :
8 eluznn M k M k
9 8 adantll A M k M k
10 7 9 ffvelrnd A M k M F A k
11 1 rpnnen2lem5 A M seq M + F A dom
12 2 4 5 10 11 isumrecl A M k M F A k