Metamath Proof Explorer


Theorem rpnnen2lem7

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem7 A B B M k M F A k k M F B k

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 eqid M = M
3 simp3 A B B M M
4 3 nnzd A B B M M
5 eqidd A B B M k M F A k = F A k
6 eluznn M k M k
7 3 6 sylan A B B M k M k
8 sstr A B B A
9 8 3adant3 A B B M A
10 1 rpnnen2lem2 A F A :
11 9 10 syl A B B M F A :
12 11 ffvelrnda A B B M k F A k
13 7 12 syldan A B B M k M F A k
14 eqidd A B B M k M F B k = F B k
15 1 rpnnen2lem2 B F B :
16 15 3ad2ant2 A B B M F B :
17 16 ffvelrnda A B B M k F B k
18 7 17 syldan A B B M k M F B k
19 1 rpnnen2lem4 A B B k 0 F A k F A k F B k
20 19 simprd A B B k F A k F B k
21 20 3expa A B B k F A k F B k
22 21 3adantl3 A B B M k F A k F B k
23 7 22 syldan A B B M k M F A k F B k
24 1 rpnnen2lem5 A M seq M + F A dom
25 8 24 stoic3 A B B M seq M + F A dom
26 1 rpnnen2lem5 B M seq M + F B dom
27 26 3adant1 A B B M seq M + F B dom
28 2 4 5 13 14 18 23 25 27 isumle A B B M k M F A k k M F B k