Metamath Proof Explorer


Theorem rpnnen2lem8

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
Assertion rpnnen2lem8 A M k F A k = k = 1 M 1 F A k + k M F A k

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F = x 𝒫 n if n x 1 3 n 0
2 nnuz = 1
3 eqid M = M
4 simpr A M M
5 eqidd A M k F A k = F A k
6 1 rpnnen2lem2 A F A :
7 6 adantr A M F A :
8 7 ffvelrnda A M k F A k
9 8 recnd A M k F A k
10 1nn 1
11 1 rpnnen2lem5 A 1 seq 1 + F A dom
12 10 11 mpan2 A seq 1 + F A dom
13 12 adantr A M seq 1 + F A dom
14 2 3 4 5 9 13 isumsplit A M k F A k = k = 1 M 1 F A k + k M F A k