Metamath Proof Explorer


Theorem rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rppwr A B N A gcd B = 1 A N gcd B N = 1

Proof

Step Hyp Ref Expression
1 simp1 A B N A
2 simp3 A B N N
3 2 nnnn0d A B N N 0
4 1 3 nnexpcld A B N A N
5 simp2 A B N B
6 4 5 2 3jca A B N A N B N
7 rplpwr A B N A gcd B = 1 A N gcd B = 1
8 rprpwr A N B N A N gcd B = 1 A N gcd B N = 1
9 6 7 8 sylsyld A B N A gcd B = 1 A N gcd B N = 1