Metamath Proof Explorer


Theorem rpregt0

Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion rpregt0 A + A 0 < A

Proof

Step Hyp Ref Expression
1 elrp A + A 0 < A
2 1 biimpi A + A 0 < A