Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Falling and Rising Factorial
rprisefaccl
Next ⟩
risefallfac
Metamath Proof Explorer
Ascii
Unicode
Theorem
rprisefaccl
Description:
Closure law for rising factorial.
(Contributed by
Scott Fenton
, 9-Jan-2018)
Ref
Expression
Assertion
rprisefaccl
⊢
A
∈
ℝ
+
∧
N
∈
ℕ
0
→
A
N
‾
∈
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
rpssre
⊢
ℝ
+
⊆
ℝ
2
ax-resscn
⊢
ℝ
⊆
ℂ
3
1
2
sstri
⊢
ℝ
+
⊆
ℂ
4
1rp
⊢
1
∈
ℝ
+
5
rpmulcl
⊢
x
∈
ℝ
+
∧
y
∈
ℝ
+
→
x
⁢
y
∈
ℝ
+
6
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
7
nn0re
⊢
k
∈
ℕ
0
→
k
∈
ℝ
8
readdcl
⊢
A
∈
ℝ
∧
k
∈
ℝ
→
A
+
k
∈
ℝ
9
6
7
8
syl2an
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
A
+
k
∈
ℝ
10
6
adantr
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
A
∈
ℝ
11
7
adantl
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
k
∈
ℝ
12
rpgt0
⊢
A
∈
ℝ
+
→
0
<
A
13
12
adantr
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
0
<
A
14
nn0ge0
⊢
k
∈
ℕ
0
→
0
≤
k
15
14
adantl
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
0
≤
k
16
10
11
13
15
addgtge0d
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
0
<
A
+
k
17
9
16
elrpd
⊢
A
∈
ℝ
+
∧
k
∈
ℕ
0
→
A
+
k
∈
ℝ
+
18
3
4
5
17
risefaccllem
⊢
A
∈
ℝ
+
∧
N
∈
ℕ
0
→
A
N
‾
∈
ℝ
+