Metamath Proof Explorer


Theorem rprisefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018)

Ref Expression
Assertion rprisefaccl A + N 0 A N +

Proof

Step Hyp Ref Expression
1 rpssre +
2 ax-resscn
3 1 2 sstri +
4 1rp 1 +
5 rpmulcl x + y + x y +
6 rpre A + A
7 nn0re k 0 k
8 readdcl A k A + k
9 6 7 8 syl2an A + k 0 A + k
10 6 adantr A + k 0 A
11 7 adantl A + k 0 k
12 rpgt0 A + 0 < A
13 12 adantr A + k 0 0 < A
14 nn0ge0 k 0 0 k
15 14 adantl A + k 0 0 k
16 10 11 13 15 addgtge0d A + k 0 0 < A + k
17 9 16 elrpd A + k 0 A + k +
18 3 4 5 17 risefaccllem A + N 0 A N +