Metamath Proof Explorer


Theorem rprmasso

Description: In an integral domain, the associate of a prime is a prime. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmasso.b B = Base R
rprmasso.p P = RPrime R
rprmasso.d ˙ = r R
rprmasso.r φ R IDomn
rprmasso.x φ X P
rprmasso.1 φ X ˙ Y
rprmasso.y φ Y ˙ X
Assertion rprmasso φ Y P

Proof

Step Hyp Ref Expression
1 rprmasso.b B = Base R
2 rprmasso.p P = RPrime R
3 rprmasso.d ˙ = r R
4 rprmasso.r φ R IDomn
5 rprmasso.x φ X P
6 rprmasso.1 φ X ˙ Y
7 rprmasso.y φ Y ˙ X
8 eqid RSpan R = RSpan R
9 1 2 4 5 rprmcl φ X B
10 1 3 dvdsrcl Y ˙ X Y B
11 7 10 syl φ Y B
12 4 idomringd φ R Ring
13 1 8 3 9 11 12 rspsnasso φ X ˙ Y Y ˙ X RSpan R Y = RSpan R X
14 6 7 13 mpbi2and φ RSpan R Y = RSpan R X
15 4 idomcringd φ R CRing
16 5 2 eleqtrdi φ X RPrime R
17 8 15 16 rsprprmprmidl Could not format ( ph -> ( ( RSpan ` R ) ` { X } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ph -> ( ( RSpan ` R ) ` { X } ) e. ( PrmIdeal ` R ) ) with typecode |-
18 14 17 eqeltrd Could not format ( ph -> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ph -> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) with typecode |-
19 eqid 0 R = 0 R
20 2 19 4 5 rprmnz φ X 0 R
21 12 adantr φ Y = 0 R R Ring
22 9 adantr φ Y = 0 R X B
23 simpr φ Y = 0 R Y = 0 R
24 7 adantr φ Y = 0 R Y ˙ X
25 23 24 eqbrtrrd φ Y = 0 R 0 R ˙ X
26 1 3 19 dvdsr02 R Ring X B 0 R ˙ X X = 0 R
27 26 biimpa R Ring X B 0 R ˙ X X = 0 R
28 21 22 25 27 syl21anc φ Y = 0 R X = 0 R
29 20 28 mteqand φ Y 0 R
30 19 1 2 8 4 11 29 rsprprmprmidlb Could not format ( ph -> ( Y e. P <-> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) ) : No typesetting found for |- ( ph -> ( Y e. P <-> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) ) with typecode |-
31 18 30 mpbird φ Y P