Metamath Proof Explorer


Theorem rprmcl

Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmcl.b B = Base R
rprmcl.p P = RPrime R
rprmcl.r φ R V
rprmcl.x φ X P
Assertion rprmcl φ X B

Proof

Step Hyp Ref Expression
1 rprmcl.b B = Base R
2 rprmcl.p P = RPrime R
3 rprmcl.r φ R V
4 rprmcl.x φ X P
5 4 2 eleqtrdi φ X RPrime R
6 eqid Unit R = Unit R
7 eqid 0 R = 0 R
8 eqid r R = r R
9 eqid R = R
10 1 6 7 8 9 isrprm R V X RPrime R X B Unit R 0 R x B y B X r R x R y X r R x X r R y
11 10 simprbda R V X RPrime R X B Unit R 0 R
12 11 eldifad R V X RPrime R X B
13 3 5 12 syl2anc φ X B