Step |
Hyp |
Ref |
Expression |
1 |
|
rprmdvdspow.b |
|
2 |
|
rprmdvdspow.p |
|
3 |
|
rprmdvdspow.d |
|
4 |
|
rprmdvdspow.m |
|
5 |
|
rprmdvdspow.o |
|
6 |
|
rprmdvdspow.r |
|
7 |
|
rprmdvdspow.x |
|
8 |
|
rprmdvdspow.q |
|
9 |
|
rprmdvdspow.n |
|
10 |
|
rprmdvdspow.1 |
|
11 |
|
oveq1 |
|
12 |
11
|
breq2d |
|
13 |
12
|
imbi1d |
|
14 |
|
oveq1 |
|
15 |
14
|
breq2d |
|
16 |
15
|
imbi1d |
|
17 |
|
oveq1 |
|
18 |
17
|
breq2d |
|
19 |
18
|
imbi1d |
|
20 |
|
oveq1 |
|
21 |
20
|
breq2d |
|
22 |
21
|
imbi1d |
|
23 |
4 1
|
mgpbas |
|
24 |
|
eqid |
|
25 |
4 24
|
ringidval |
|
26 |
23 25 5
|
mulg0 |
|
27 |
7 26
|
syl |
|
28 |
27
|
breq2d |
|
29 |
28
|
biimpa |
|
30 |
24 3 2 6 8
|
rprmndvdsr1 |
|
31 |
30
|
adantr |
|
32 |
29 31
|
pm2.21dd |
|
33 |
32
|
ex |
|
34 |
|
simpllr |
|
35 |
34
|
syldbl2 |
|
36 |
|
simpr |
|
37 |
|
eqid |
|
38 |
6
|
ad3antrrr |
|
39 |
8
|
ad3antrrr |
|
40 |
6
|
crngringd |
|
41 |
4
|
ringmgp |
|
42 |
40 41
|
syl |
|
43 |
42
|
ad3antrrr |
|
44 |
|
simpllr |
|
45 |
7
|
ad3antrrr |
|
46 |
23 5 43 44 45
|
mulgnn0cld |
|
47 |
42
|
adantr |
|
48 |
|
simpr |
|
49 |
7
|
adantr |
|
50 |
4 37
|
mgpplusg |
|
51 |
23 5 50
|
mulgnn0p1 |
|
52 |
47 48 49 51
|
syl3anc |
|
53 |
52
|
breq2d |
|
54 |
53
|
biimpa |
|
55 |
54
|
adantlr |
|
56 |
1 2 3 37 38 39 46 45 55
|
rprmdvds |
|
57 |
35 36 56
|
mpjaodan |
|
58 |
57
|
ex |
|
59 |
13 16 19 22 33 58
|
nn0indd |
|
60 |
9 59
|
mpdan |
|
61 |
10 60
|
mpd |
|