Metamath Proof Explorer


Theorem rprmirredb

Description: In a principal ideal domain, the converse of rprmirred holds, i.e. irreducible elements are prime. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmirredb.p P = RPrime R
rprmirredb.i I = Irred R
rprmirredb.r φ R PID
Assertion rprmirredb φ I = P

Proof

Step Hyp Ref Expression
1 rprmirredb.p P = RPrime R
2 rprmirredb.i I = Irred R
3 rprmirredb.r φ R PID
4 3 adantr φ p I R PID
5 eqid Base R = Base R
6 2 5 irredcl p I p Base R
7 6 adantl φ p I p Base R
8 eqid Unit R = Unit R
9 2 8 irrednu p I ¬ p Unit R
10 9 adantl φ p I ¬ p Unit R
11 df-pid PID = IDomn LPIR
12 3 11 eleqtrdi φ R IDomn LPIR
13 12 elin1d φ R IDomn
14 13 idomringd φ R Ring
15 14 adantr φ p I R Ring
16 simpr φ p I p I
17 eqid 0 R = 0 R
18 2 17 irredn0 R Ring p I p 0 R
19 15 16 18 syl2anc φ p I p 0 R
20 nelsn p 0 R ¬ p 0 R
21 19 20 syl φ p I ¬ p 0 R
22 eqid Unit R 0 R = Unit R 0 R
23 nelun Unit R 0 R = Unit R 0 R ¬ p Unit R 0 R ¬ p Unit R ¬ p 0 R
24 22 23 ax-mp ¬ p Unit R 0 R ¬ p Unit R ¬ p 0 R
25 10 21 24 sylanbrc φ p I ¬ p Unit R 0 R
26 7 25 eldifd φ p I p Base R Unit R 0 R
27 eqid RSpan R = RSpan R
28 eqid r R = r R
29 15 ad3antrrr φ p I x Base R y Base R p r R x R y R Ring
30 7 ad3antrrr φ p I x Base R y Base R p r R x R y p Base R
31 5 27 28 29 30 ellpi φ p I x Base R y Base R p r R x R y x RSpan R p p r R x
32 31 biimpa φ p I x Base R y Base R p r R x R y x RSpan R p p r R x
33 5 27 28 29 30 ellpi φ p I x Base R y Base R p r R x R y y RSpan R p p r R y
34 33 biimpa φ p I x Base R y Base R p r R x R y y RSpan R p p r R y
35 13 idomcringd φ R CRing
36 35 ad4antr φ p I x Base R y Base R p r R x R y R CRing
37 2 eleq2i p I p Irred R
38 37 biimpi p I p Irred R
39 38 adantl φ p I p Irred R
40 eqid RSpan R p = RSpan R p
41 7 snssd φ p I p Base R
42 eqid LIdeal R = LIdeal R
43 27 5 42 rspcl R Ring p Base R RSpan R p LIdeal R
44 15 41 43 syl2anc φ p I RSpan R p LIdeal R
45 5 27 17 40 4 7 19 44 mxidlirred Could not format ( ( ph /\ p e. I ) -> ( ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) <-> p e. ( Irred ` R ) ) ) : No typesetting found for |- ( ( ph /\ p e. I ) -> ( ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) <-> p e. ( Irred ` R ) ) ) with typecode |-
46 39 45 mpbird Could not format ( ( ph /\ p e. I ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ph /\ p e. I ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) with typecode |-
47 46 ad3antrrr Could not format ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) with typecode |-
48 eqid LSSum mulGrp R = LSSum mulGrp R
49 48 mxidlprm Could not format ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( MaxIdeal ` R ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) with typecode |-
50 36 47 49 syl2anc Could not format ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) : No typesetting found for |- ( ( ( ( ( ph /\ p e. I ) /\ x e. ( Base ` R ) ) /\ y e. ( Base ` R ) ) /\ p ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) with typecode |-
51 simpllr φ p I x Base R y Base R p r R x R y x Base R
52 simplr φ p I x Base R y Base R p r R x R y y Base R
53 simpr φ p I x Base R y Base R p r R x R y p r R x R y
54 5 27 28 29 30 ellpi φ p I x Base R y Base R p r R x R y x R y RSpan R p p r R x R y
55 53 54 mpbird φ p I x Base R y Base R p r R x R y x R y RSpan R p
56 eqid R = R
57 5 56 prmidlc Could not format ( ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ ( x ( .r ` R ) y ) e. ( ( RSpan ` R ) ` { p } ) ) ) -> ( x e. ( ( RSpan ` R ) ` { p } ) \/ y e. ( ( RSpan ` R ) ` { p } ) ) ) : No typesetting found for |- ( ( ( R e. CRing /\ ( ( RSpan ` R ) ` { p } ) e. ( PrmIdeal ` R ) ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ ( x ( .r ` R ) y ) e. ( ( RSpan ` R ) ` { p } ) ) ) -> ( x e. ( ( RSpan ` R ) ` { p } ) \/ y e. ( ( RSpan ` R ) ` { p } ) ) ) with typecode |-
58 36 50 51 52 55 57 syl23anc φ p I x Base R y Base R p r R x R y x RSpan R p y RSpan R p
59 32 34 58 orim12da φ p I x Base R y Base R p r R x R y p r R x p r R y
60 59 ex φ p I x Base R y Base R p r R x R y p r R x p r R y
61 60 anasss φ p I x Base R y Base R p r R x R y p r R x p r R y
62 61 ralrimivva φ p I x Base R y Base R p r R x R y p r R x p r R y
63 5 8 17 28 56 isrprm R PID p RPrime R p Base R Unit R 0 R x Base R y Base R p r R x R y p r R x p r R y
64 63 biimpar R PID p Base R Unit R 0 R x Base R y Base R p r R x R y p r R x p r R y p RPrime R
65 4 26 62 64 syl12anc φ p I p RPrime R
66 65 1 eleqtrrdi φ p I p P
67 simpr φ p P p P
68 13 adantr φ p P R IDomn
69 1 2 67 68 rprmirred φ p P p I
70 66 69 impbida φ p I p P
71 70 eqrdv φ I = P